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ABSTRACT

Bottom interaction is recognized as an important and only
partially understood component of low frequency underwater
sound propagation. Several .ohases of this complex problem
have been investigated during the first year of a planned
multiple year study. This report describes several aspects
of the study including sensitivity of propagation loss to
bottom loss variations, sensitivity of bottom loss to varia-
tions in ocean bottom physical parameters, bottom roughness
effects, and propagation over a sloping bottom.
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I. INTRODUCTION AND SUMMARY

This report describes some of the results of the first year of a

planned multiple-year investigation of sea bottom interaction of propagating

low frequency underwater sound. Because much of the work is still in

progress, the report pictures an investigation and is not conclusions of

a completed study. As different phases of the work are zompleted, begin-

ning in the second year, technical reports are to be issued that present

conclusions.

The background for the study is described in the introduction,

followed by a summary of the report. The subsequent chapters (II, III,

IV, and V) are written to each give a description of separate aspects of

the ongoing program. Chapter II deals with studies of sensitivity of

propagation loss to variations in the bottom loss, whereas chapter III

describes studies of the sensitivity of bottom loss to variations of the

geoacoustic description of the bottom material. The investigation of the

effect of bottom roughness on propagation is described in chapter IV and

the study of propagation over a sloping bottom is described in chapter V.

The subject of each chapter is also the subject of a task of the overall

bottom interaction program. Although these subjects are all related, in

this report they are treated separately because they are now being

separately studied.

A. Introduction

Underwater sound energy propagates between a source and receiver by

one or more of several paths: direct (refracted-re-.racted, R'R'), surface

reflected-refracted (R'SR), bottom reflected-refracted (R'BR), and surface

reflected-bottom reflected (SRBR or simply RR) being the conventional

designations of the more important multipaths (surface duct and leakage or

diffraction multipaths being significant in some cases). The relative
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amount of sound energy arriving via the various paths (the partitioning

of energy among the multipaths) is a function of the propagation geometry

(source depth, receiver depth, bottom depth, and topography), of the form

of the sound speed profile and of other parameters such as frequency of

the sound and loss associated with phenomena occurring along a given path

(e.g., surface reflection loss).

The question of the relative importance of bottom interaction in the

propagation process is complex. In some circumstances, underwater sound

propagation is dominated by non-bottom-interacting energy regardless of

the bottom reflection c'-efficient. In other circumstances, the details of

the bottom irteraction strongly determine the propagation loss. For long

range propagation in some geometries multiple interactions with the bottom

will result in extreme sensitivity of propagation loss to small changes

in the reflection coefficient. This sensitivity can be such that single

bounce reflection measurements cannot be made with sufficient accuracy to

allow accurate estimation of propagation loss (i.e., if bottom interacting

multipaths dominate the propagation, an error of 1 dB in the bottom loss

would result in a 10 dB error in the propagation loss estimate for ranges

such that ten bottom interactions occur).

Another complexity in the bottom interaction problem involves a

question of the adequacy of characterizing the bottom interaction pilcess

with a plane wave reflection coefficient. Underwater sound energy

impinging on the sea bottom is partially reflected back into the water and

partially transmitted into the bottom material. At sufficiently high

frequencies, the bottom interaction has been successfully represented by

a reflection coefficient. As frequencies of interest decrease, more and

more bottom penetrating energy is returned to the water column. This

bottom penetrating energy reflects from subbottom layers and is refracted

by the usually observed positive gradient of sound spzd with depth in the

bottom. At some low frequency, below a few kilohertz and above the fre-

quencies used in seismic subbottom profiling, the relative amount of

energy in the subbottom returns becomes so large that it cannot be ignored
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in the bottom interaction process. The frequency regime requiring

treatment of the bottom as a coupled propagation domain will, of course,

be dependent on the propagation geometry and the geoacoustic description

of the water and bottom in the area of interest. Additional complexity

is introduced into the bottom interaction problem by a range changing

geoacoustic description of the water or bottom as well as by topographic

variations on scales varying from a sloping to a rough bottom.

If either reflection at the sea bottom interface or propagation

through the subbottom is required to accurately model a given propagation

situation, then an important question must be answered: how much detail

and accuracy is required in the input geophysical description of the

bottom?

in the present investigation, various features of the bottom

interaction are studied individually to develop a quantitative understanding

of their importance. For example, the question of when variations in

bottom loss are significant to low frequency propagation is being investi-

gated for a horizontally stratified ocean by runs of propagation models

such as FACT. The bottom loss versus grazing angle input to the model is

varied and the resulting variation of propagation loss is computed for

various sound speed profiles, propagation geometries, bottom depths and

frequencies. This results in a quantitative description of propagation

sensitivity to variations of bottom loss. To relate bottom loss to

variations in the bottom material, the changes in bottom loss associated

with various geoacoustical descriptions of the bottom are calculated with

bottom loss models. The result is a quantitative description of bottom

loss sensitivity to varying sea bottom material. Considerable progress

has been made in this study as described in the following chapters. A

detailed presentation of the results of this part of the work is to be

made in a separate technical report.

If the bottom interaction is characterized by a reflection coefficient

(or bottom loss), then a pertinent concern is the degree of bottom loss
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introduced by bottom interface roughness. Part of the present study

examines the usefulness of existing scattering theory to answer this

question.

Another task is the investigation of propagation in a region with

a slcping bottom. Several questions are of interest. How well do pre-

dict:ons using existing techniques compare with ocean propagation data

and with exact solutions in simplified sloping bottom regions? What are

the sensitivities of this type of propagation to changes in source/

receiver geometry, sound speed profile, frequency and bottom description

(for various segments of the propagation path)? What approaches are

promising for improving prediction capability?

All of these studies are designed to elucidate our present prediction

capabilities for bottom interacting multipaths, to suggest lines of

approach where prediction deficiencies exist, to determine the minimum

amount of information required for adequate predictions, and +- determine

our existing bottom description data base and techniques for -ing in

the gaps.

B. Summary

Four aspects of a study of bottom interaction of low frequency sound

are described separately in Chapters II through V. The four aspects, also

to be considered separately in this summary, are: sensitivity of propa-

gation loss to bottom loss variations, sensitivity of bottom loss to

variations in the geoacoustic description of the bottom, rough interface

effects, and propagation over a sloping bottom. Progress has been achieved

in each task area in problem identification and deve2-'pment of tools and

methods, and in obtaining initial results with these tools and methods.

1. Sensitivity of Propagation to Bottom Loss

The propagation parameter being studied is propagation loss.

The propagation loss has been shown to be very sensitive to variations of
if
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bottom loss for some propagation geometries and sound speed profiles,

whereas it is relatively insensitive for other combinations of thes,

parameters. TAs seemingly trivial result is important because the degree

of sensitivity is being quantified for different combinations of param-

eters: this is a significant step beyond reliance on intuition to define

sensitive and insensitive propagation geometries. One of the first goals

of this phase of the work has been identified. It is to determine those

combinations of propagation parameters (source depth, receiver depth,

profile form, bottom depth) showing only small sensitivity to bottom

effects (and quantifying what is meant by "small"). This excludes a

domain of parameter combinations from the more complete examination of

detailed aspects of the importance of bottom loss variations. For those

combinations of parameters not thus excluded, detailed investigations are

under way to determine which grazing angle segments (of the bottom loss

versus grazing angle curve) are important and what the quantit.tive sensi-

tivity is. In chapter II, some examples are given for approaches being

examined, using range averages of propagation loss, to identify insensitive

combinations of parameters. Such averaging techniques must, of course, be

used with caution and details of the actual propagation loss versus range

curves must be examined to verify any doains identified as "insensitive."

Also described in chapter II are some of the detailed examinations being

conducted in sensitive portions of the water column (e.g., near the bottom)

to quantify the sensitivity (x change in bottom loss produces y change in

propagaticn loss) and the grazing angle segments controlling the sensitivity.

A technical report detailing the results of these studies is in preparation.

2. Sensitivity of Bottom Loss to the Geoacoustic Description of

the Bottom

One primary goal of this work has been identified as a determination

of the "hidden depth." This is the depth below which the geoacoustic

description of the bottom material does not affect the calcvlation of bottom

loss. That is, below this depth the bottom material can be clay, sand,

rock, or clathrate and the resulting bottom loss will be the same. This

depth defines the maximum depth to which one must describe the bottom
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material to accurately calculate bottom loss (or interpret bottom loss

measurements). The results will obviously be frequency dependent, and

will probably also depend on such parameters as absorption and gradients

of sound speed in the bottom material. Initial results from this study

suggest that the hidden depth (for a ray incident at a given bottom grazing

angle) lies within a few wavelengths of the turning depth of the ray in

the bottom.

Another question is, for depths shallower than the hidden depth,

how much precision is needed in the geoacoustical description of the

bottom? That is, how accurate must geoacoustic descriptions or measure-

ments be (and what is the required resolution) to produce bottom loss

results within acceptable bounds?

To answer these questions, various bottom loss models are being

used. These include a Rayleigh reflection coefficient model, an implemen-

tation of the Mbrris pseudolinear gradient model (with shear waves added

to the lowest layer), and a numerical integration model developed at ARL.

The last model was developed to overcome the difficulties of using the

pseudolinear gradient model for very thick layers, as must be done to

address the hidden depths question. Other models will be used in this

study as they become available.

The ARL numerical integration bottom loss model makes it possible

to investigate the influence of density gradients on the bottom loss.

Density gradients used were within the observed bounds reported by Hamilton

(ref. 14 of chapter III). The change of bottom loss resulting from intro-

duction of the density gradient (versus constant density calculations) was

found to exceed 1 or 2 dB only rarely, with more common values on the order

of a few tenths of a decibel.

The effects of shear waves in the n.'erlying basement rock were

also studied. They were found normally to be important only for steep

angles of incidence on the bottom, However, for some combinations of
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parameters, especially for clay and silt overburdens, shear waves in the

basement rock can cause large changes in bottom loss at low angles. This

is potentially significant because it occurs in a gazing angle segment

identified as important for low frejaency propagation.

3. Rough Interface Effects

Various available techniques were examined for including

roughness in bottom interaction calculations. The reflection coefficient

method accounts for rough interface scattering in a propagation problem

by multiplying the ordinary bottom reflection coefficient (for a flat

bottom) by a scattering coefficient determined from the topographic

properties of the rough bottom. The resulting product is then used in

propagation calculations as a modified reflection coefficient for the

bottom. Available conventional scattering theory for a penetrable rough

interface has been examined, necessitating the writing of a computer program

to examine the predicted degree of sensitivity of the modified reflection

coefficient to rough bottom parameters such as the Vms surface slope. The

large sensitivity to this parameter, predicted by the theory, is interpreted

to be a result of shadowing corrections and a single scattering assumption

introduced in the development of the theory.

A potentially more useful approach, that of Lysanov (ref. 4 of

chapter IV), replaces the exact boundary condition on the rough surface by

an approximate boundary condition on the mean plane of the bottom. This

perturbation approach is potentially valuable for the present study because

it sets out from the beginning to specify a boundary condition for a

propagation problem. It is anticipated that the continuing work on rough

interface effects will be along the lines initiated by Lysanov, and more

recently pursued by Kuperman (refs. 5 and 7. chapter IV).

f. Propagation over a Sloping Bottom

Two numerical models capable of propagation calculations in a

range changing environment were implemented at ARL. They are the NRL ray
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model TRIMAIN and the AESD parabolic equation model PE, Although the

ability of these models to treat bottom interacting energy has some

limitations, the models have been found useful for slope enhancement

calculations. The slope enhancement shown by some recent data sets can

be approximated by calculations with these models. The enhancement was

found to be related in a complex manner to source and receiver depths,

sound speed profile, angular slope of the bottom, and bottom loss on the

slope. Quantifying these relationships is the goal of ongoing sensitivity

studies.

To t.st the validity of some of these calculations, various

theoretical approaches to calculation of propagation over a sloping bottom

are being examined. These include a dual integral equation approach and

mode-mode coupling.
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I. SENSITIVITY OF PROPAGATION TO BOTTOM LOSS

A. Introduction

The impact of variations in the geoacoustical description of the

bottom on propagation is being investigated at ARL by studies of propaga-

tion loss sensitivity to bottom loss variations arid of bottom loss

sensitivity to variations of the bottom geoacoustics. Later studies will

directly investigate propagation loss sensitivity to variations of bottom

geoacoustics without the intermediate calculation of bottom loss.

The challenge of the present study is to determine techniques for

measuring and describing these sensitivities in a concise manner. The

brute force approach would involve a very large number of computer model

runs and subsequent publication of a catalog of results. This would not

be very useful. Therefore, our approach is to make a few test computer

runs, exzend hypotheses of sensitivities based on these results and a

knowledge of the propagation processes and then test these hypotheses with

additional runs. In this way an understanding of bottom interaction is

developed. Our present challenge, in addition to continued development of

this understanding, is the development of techniques for conveying the

understanding without requiring a person to go through the entire process

as we have. Intermediate results of propagation loss sensitivity are

described below.

The sensitivity of propagation loss to bottom loss has been studied

using FACT model runs. In order to simplify the problem, certain parameters

were held fixed for most of the model runs. These parameters were source

depth (500 ft), frequency (100 Hz), and the sound speed profile, shown in

Fig. II.1. This profile, which is a simplification of a North Pacific

profile, was used in these initial studies to allow controlled variation

of its characteristics. The profile is representative of many regions of

the subtropical oceans and has a well developed deep sound channel.
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With source depth, frequency and profile fixed, parameters that varied

were receiver depth, bottom depth, and bottom loss versus grazing angle.

The receiver depths studied were the channel axis (700 m), the critical

depth when it existed (3600 m) and 30 m off the bottom. Five bottom depths

were used. They produced a depth deficiency of 100 m and depth excesses

of 60 m, 670 m, )280 m, and 1400 m. The bottom loss versus grazing angle

curves which were used are shown in Fig. 11.2 and are those designated as

types 1, 3, and 5 in the FACT program. The bottom type 1 is a low loss

bottom, exhibiting no loss below a critical angle of 190. Bottom type 3

is of intermediate loss and bottom type 5 is high loss, having some loss

at all grazing angles.

The propagation loss for each of the runs was calculated at 120 range

points out to 480 nm range. Since direct comparisons between runs at

individual range points have little real meaning, averages of the dB

propagation loss over approximately 100 nm intervals were calculated for

each run. Comparisons between these averages were performed to determine

the magnitude of the bottom effects.

B. Bottom Depth Dependence

The averages of propagation loss for three receiver depths are

presented in Tables II.1 through 11.3 as a function of the bottom depth.

Within each range interval column comparisons can be made to determine

bottom depth dependence.

The bottom depth dependence for either the axis depth or critical

depth receiver is dependent on bottom type: for bottom type 1, loss

decreases with decreasing bottom depth; for bottom type 3 only small

variation is shown with no consistent bottom dependence; and for bottom

type 5, loss increases with decreasing bottom depth. Furthermore, for

these two receiver depths and bottom type 5, the effect of a 600 m change

in bottom depth was greater for a shallower initial bottom depth. A

600 m decrease in depth from 5900 m resulted in about 0.6 dB increase in
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propagation loss at the axis receiver. The same depth change from an

initial bottom depth of 4300 m resulted in a 1.2 dB increase. The effects

of the change in bottom depth from 5000 m to 3660 m for a type 5 bottom

were range dependent. For the axis receiver the effect of this change in

bottom depth was 2.7 dB in the 100 to 200 nm interval and only 1.9 dB in

the 300 to 400 nm interval. For the critical depth receiver this effect

for the same two range intervals was respectively, 15.2 dB and over 80 dB.

For all bottom types the propagation loss to a receiver 30 m off the

bottom decreased as the bottom depth decreased. When the bottom depth

decreased from 5000 m to 3500 m, the propagation loss for a type 1 bottom

decreased by 3 dB, while for a type 3 bottom, it decreased by 3.5 dB.

For this same change in bottom depth, the decrease in propagation loss for

the type 5 bottom was between 9 and 30 dB; the decrease being range

dependent with larger effects at greater ranges.

Two competing factors produce the observed results. (1) As the bottom

depth is decreased, more energy interacts with the bottom and the bottom

interaction angles are steeper (which factors tend to increase the average

propagation loss). (2) The reduced bottom depth reduces the total volume

over which the propagating energy is spread (which factor tends to reduce

the average propagation loss).

The relative importance of these factors is modified for the different

bottom types according to the value of the critical angle and the bottom

loss below 6he critical angle. Bottom types 1 and 3 are perfect reflectors

at grazing angles less than their critical angle. As the bottom depth

decreases, additional bottom interactions above critical angle will result

in additional losses but this is counteracted by rays intersecting the

bottom below the critical angle and being redistributed over a smaller

depth interval. For the sound speed profile of this study, redistribution

of the low grazing angle energy dominated the additional loss of energy

at higher angles. The effects of moving the bottom up the water column

16



were independent of range for these two bottom types. This indicates

that beyond 100 nm range the bottc- interactions above the critical

angle become insignificant in FACT's calculations of propagation loss.

The critical angle is much smaller for bottom type 5 and there is a

finite loss below the critical angle. When the bottom depth is decreased,

the additional bottom interactions result in a significant additional

loss. This loss is sufficient to cause an overall increase in propagation

loss with decreasing bottom depth for the sound channel axis and critical

depth receivers.

The results in Table 11.3 indicate that the amount of energy

reaching the receiver 30 m off the bottom increases as the bottom depth

decreases, independent of the bottom loss characteristics. These results

obtained with the ray theory model FACT are being compared with results

from the wave theory model PE.

C. Receiver Depth Dependence

Table 11.4 presents the average propagation loss for a series of

receiver depths in 5000 m of water (also for the profile in Fig. II-1).

Results are shown for receivers at axis depth, at critical depth, and

at receivers spaced about 300 m apart between critical depth and the

bottom.

Receiver depth dependence is small and follows a similar pattern for

either type 1 or 3 bottoms. The average propagation loss decreases about

I dB between the axis depth and critical depth. Below critical depth,

the loss in general increases with receiver depth.

For the type 5 bottom, the loss in general increases with receiver

depth at all depths. The increase in propagation loss with depth change

17
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was greatest between 4420 and 4970 m depth. Near the bottom, small

changes in the receiver depth led to large changes in the average

propagation loss.

D. Bottom Loss Dependence

Comparisons were made between average propagation loss for the

various bottom types in the discussions of Tables I1.1 through 11.3.

Differences were described as being the result of change in the critical

angle and as the effect of the variation of bottom loss below critical

angle.

Comparison shows that differences in average loss associated with

changes between the types 1 and 3 bottom are independent of the range;

this is due to the perfect reflection below the critical angle. The

differences between the calculations for these two bottom types increase

with receiver depth. The differences are generally less than 2 dB.

Two additional test cases were run. For these the bottom loss

below the critical angle was varied to examine the sensitivity to the low

grazing angle losses. The receiver in both cases uas 30 in off the bottom.

For the first case, the profile of Fig. II.1 was used together with an

initial bottom loss curve which was similar to a type 1 bottom. Below

the critical angle, constant bottom loss values of 0, 1, 2, and 3 dB

were used for the separate runs (see Fig. 11.3).

The resulting four propagation loss curves are shown in Fig. II.4.

With a perfect reflector below the critical angle, the propagation falls

off with only an inverse range dependence (no convergence zones are

apparent). When a 1 dB loss is introduced below critical angle, an

additional decibel of loss is incurred for each bottom interaction.

There are approximately 15 convergence zones out to 400 nm, which

accounts for most of the 19 dB difference between the 0 dB and 1 dB

19
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loss runs at 400 nm. Similarly, the 16 dB difference between the I dB

and 2 dB runs and the 15 dB difference between the 2 dB and 3 dB rims can

be accounted for by the additional losses below the critical angle.

As the energy reflected from the bottom decreases in runs with sucoess-

ively higher loss below critical angle, the bottom reflected energy

does not dominate the received signal and convergence zones appear.

To examine the influence of a smaller segment of bottom grazing

angles, a second set of runs was made. In the second case a measured pro-

file was used. The bottom loss used in this case varied only in the 0 to

10 grazing angle segment (Fig. 11.5). For one run, the loss was 1 dB,

and for the other, 2 dB for grazing angles below 10. The two propaga-
tion runs for case 2 appear in Fig. TI.6. In this case the two curves

also separate about 1 dB per convergence zone.

The bottom bounce energy at long range falls off at the same rate

for the 10 critical angle and the 190 critical angle (compare Figs. 11-4

and 11-6). This is true because, for this near bottom receiver, at the

long ranges, only very low grazing angles are important; this is further

illustrated by the arrival angle structure shown in Fig. 11.7. The

higher angles will affect the falloff only at the shorter ranges.

These are but a few examples of the propagation loss sensitivity

studies which are underway. They show that in some cases great sensi-

tivity to bottom loss is exhibited by propagation loss model runs,

while in other cases the propagation loss is relatively insensitive to

the bottom. Systematizing and quantifying these observations is con-

tinuing. One of the present efforts is delineating those propagation

geometries exhibiting minimal sensitivity to bottom interactions.

Another effort is delineating the details of the relationship when

bottom interaction is a significant component of the propagation.

22



w

-iJ

0zz

00

WIL Iz
coow

I-I-T

3I-I-o 
z-dg SOjWl

000 023



0

-- -

-------- ----- - ---

- - --- "0
0o-- -- - ---

° ---' ' oo ° --.- _--,---- .,w
0

- 0

* I .

010 L

N Lnn0

ooloo
I IX

D-I- U

. - I-

00 II o

0

0 0 0 0 0 00 -
..-.-. KCF-DR0P - SSO1 NOIYOVdOd 2 -12 - 76

24



+25- 0
0

2 0 0000
0

0 0
0 0

15- 0 0 0 0 0
0 0

00 0
0 0 0 0

0 0 0 0 0
+10_9 0 0 0 00 0 0 Go o0

0 0 0 0 00 00
0 0 00 00 0 OD 00

0 0 0 0 0 00 00 000 000 0
+5 0 0 o 00 00 000 00 oo cD 0o0 0 0oo 0 0

0 0 0 0 oo O0 0oo o 00 0OO00 0000 ow 0oo0
00 00 000 000 000 0000 -0C O00 000 00 0 .

.. ........
OD O0 00 o o000000 =0ococow

0 0 0 0 00 OO 000 000 000 owo 0000
Lu 0- 0 0 0 0
-j 0 0 0 00 OD o0 000 00 o O 000
o 0 0 000 0 Q= OOW0 C0O=m ;^ 00W00000000
x 0 0 0 o 0000 0000 0c 000 00000 00w=00 00--- -

0 0 co a0 00 00oo o om o0 m-% ow oo0
-5 0 0 0 00 00 00 co 000 000 00 O 00 00

0 0 0 0 0 0 00 cao coo 00
0 0 0 o 00 00 0

0 0 o 0 o 00
0 0 0 0 0

-10- 0 0 00 o
00 0 0 0

0 0 0 0

0

0 0
-20- o o

0
0

-25 I I I I I I
0 40 80 120 160 200 240 280 320 360 400

RANGE - nm

FIGURE 11-7
ARRIVAL ANGLE VERSUS RANGE FOR A RECEIVER 30 m OFF THE BOTTOM

(BOTTOM DEPTH 5000 m)

ARL - UT
AS-76-131
KCF- DR
2- 12 -76

25



III. SENSITIVITY OF BOTTOM LOSS
TO THE GEOACOUSTIC DESCRIPTION OF THE BOTTOM

A. Introduction

A relatively complete geoacoustic description of the bottom is

required for prediction of some propagation phenomena at very low fre-

quencies. However, many models used for predicting underwater sound

propagation treat the bottom as a reflecting interface which can be

characterized by a plane wave reflection coefficient (or bottom loss).

Given such a description, it is then reasonable to ask, independent of

any propagation situation or model, about the sensitivity of the reflec-

tion coefficient (bottom loss) to changes in any of the physical parame-

ters characterizing the bottom.

Of course, if a particular propagation situation is not specified it

is not possible to restrict the angular range over which such questions

are to be answered. Although we shall usually have in mind long range

acoustic propagation paths for which the bottom loss at low grazing

angles dominate, the study will not be restricted to such angles. For

shorter ranges or severe bottom depth deficiencies, the higher grazing

angles will also be important.

Given a bottom loss model of multilayered horizontally stratified

sediments overlying a rock substrate, the number of physical parameters

and layering configurations required for an exhaustive sensitivity study

is quite large. In this report application of models is restricted

to the simplest and most obvious questions, such as the importance of

shear waves, sound speed gradient, density gradient, etc.
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In addition to sensitivity of bottom loss to changes in a specific

parameter, there is the generic problem of determining the depth below

which nothing needs to be known about the sediment or substrate. These

depths, the hidden depths, will of course depend on the propagation

configuration (range of bottom grazing angles) as well as sediment type,

sound speed gradient, absorption, and frequency. Although there is not

a final answer to the hidden depths question considerable progress has

been made.

B. Development of Bottom Loss Models

1. Preliminaries

Given the wide scope of this task, it is clear that a

reasonably sophisticated bottom loss model will be required. Since we

are at present treating the rough surface problem separately, it is

reasonable to assume a model which is completely horizontally stratified.

Beyond this it is not immediately clear, without prejudging the outcome,

what other aspects of the general case might be ignored. One simplifica-

tion is achieved by restricting the sediments to fluids. It may be

that shear waves provide a nontrivial loss mechanism in some subbottom

sediment layers. However, the additional complexity introduced by

including them is not justified in the initial part of the study. The

shear wave speed in unconsolidated sediments is usually less than 10%

of the compressional wave speed. However, in the underlying basement

rock it is no longer reasonable to ignore shear waves because the shear

wave speed can be on the order of 50% of the compressional wave speed

and can therefore provide a significant acoustic path.

We are left then with a class of bottom loss models based on a

series of horizontally stratified fluid layers overlying a semiinfinite

solid layer. Two other significant points are the variation of sound

speed and density with depth within any given sediment layer. The
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simplest case, constant sound speed and constant density, has been

adequately treated in the literature. The generally observed linear

increase of sound speed with depth should be incorporated in any model

used in the sensitivity study. Estimates of the importance of variable

density are to be made in a later phase of the work.

2. Early Attempts

By ignoring for the moment the possibility of a continuously

variable density, the mathematical problem can be very simply stated.

The field (velocity potential) in the water is written as

ik sinez -ik zsine
S= e 0 +Re 0

where k0=yc and R is the reflection coefficient. In each sediment

layer we must solve

2c +  . )2k(7
c - k cos e i = 0

(Pz 1o

2 2 2 k() ~ s~~i=

where ki2(z)=3/ci2(z) and c.(z) is the sound speed in the ith layer.

At each sediment-sediment (or sediment-water) interface the fields must

satisfy the usual conditions of continuity of (p! and pi(qi. At the

sediment-rock interface the conditions are more complicated and will be

discussed later.

The only difficult part of the problem is, for given Ici(z)1,

to solve the one-dimensional wave equation in each layer. There are

several ways in which this question may be approached:

a) analytical methods - choose ci(z) such that the equation is

solvable,

b) asymptotic techniques - for example the WKB method.

29
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c) perturbation - variational methods, and

d) numerical methods - a numerical integration of the wave

equation itself.

Since our primary object is to study bottom effects rather

than to develop models, the straightforward approach was to investigate

first an analytically solvable model. Previous applicable work has

been published by Morris. 1 -3 Her work has been extensively applied

to predict and correlate experimental bottom loss data from various

areas. This model is based upon the pseudolinear sound speed model.,

c(z)=c/J/+iz, which for small Pz becomes c(z)=c[l-1/2(Pz)] repre-

senting a linear increase (or decrease) of sound sperq with depth.

From both theoretical and experimental considerations one

expects that the sound speed in a sediment layer will in fact increase

approximately linearly with depth. Consequently, this model is attractive

since it is exactly solvable in terms of Airy functions which may be

evaluated numerically on a computer.

The first attempt at assembling a bottom loss model for use in

the sensitivity study was therefore based on an implementation of Morris'

model. A program was written to evaluate the reflection coefficient in

the Morris formulation using a preexisting ARL subroutine to compute

the Airy functions. The program was checked both internally and by

comparison with Morris' results and was found to be operating properly.

Originally, Morris' model was composed of a series of fluid

sediment layers overlying a fluid half space, also containing a pseudo-

linear variation of sound speed with depth. In the ARL version of this

model the number of sediment layers was restricted to two and these over-

lay a solid half-space containing no sound speed gradient. The inclusion

of shear waves in the underlying half space was the only significant

extension of Morris' original model.
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Although this model has proved useful for some aspects of

the sensitivity study, it has drawbacks when used to address the hidden

depths question. The most important requirements for a model which

can provide answers to the hidden depth question are (1) an adequate

treatment of the increase of sound speed with depth, and (2) the

capacity to compute the bottom loss for thick sediment layers.

There are, however, difficulties in using the pseudolinear

model for thick layers. One difficulty is that c(z)=c/l+z will

approximate a linear increase of sound speed with depth for (pz)<<l

only. When this inequality is not satisfied, a different physical model

is implied. More seriously, since KO, there will be a depth at which

the sound speed becomes unbounded. This has no physical meaning, but

if there is appreciable sound energy at this depth, it cannot be ignored

since it is built into the mathematical model.

Some of these aspects of the pseudolinear model are discussed

in a recent paper by A. 0. Williams, Jr.4 Williams also discusses some

aspects of an alternative reflection coefficient based on an exponential

profile k2(z)=k2 +2 e z . Such a profile avoids both the singularity in

the sound speed of a pseudolinear model and the unbounded increase in

c(z) as z- of a true linear model. Some estimates using this model

are given, but no extensive calculations have yet been carried out.

In any event, the pseudolinear model will always have an
-i

ultimate hidden depth at z=P1 since below this depth the sound field

vanishes exponentially in all cases. The "barrier" thus formed can

exhibit tunneling and the highly upward refracting profile can cause

odd diffraction behavior, especially for large angle reflection. These

are again artifacts of the mathematical model. Even in only moderately

thitk layers, when the sound speed is finite everywhere, the "anomalous"

upward refraction (relative to a true linear model) can lead to a

desensitization of the reflection coefficient to changes in the physical

description of the subbottom.
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Thus, the pseudolinear model is primarily useful for its

originally stated purpose of calculating reflection loss from bottoms

composed of thin layers. It is not useful for investigating the hidden

depths problem because the nature of the question involves thick layers.

An obvious direction to go in improving the existing models

is to use a linearly increasing sound speed, which is the same condition

as the actual physical situation being modeled. The one-dimensional

wave equation with k 2(z)=w /c2 (l+pz) can be solved in terms of Bessel

functions. The solution can conveniently be taken to be

C = AT, + z HU )  k0. cos e

114i - k2P

(2~ /ik cos e
+ B l/,+-pz H' [ /2 l+pz])

1/4 - k /
where H() and H(2)( ) are Hankel functions. At 100 Hz

and a sound speed gradient of 1 sec , Ik /P 2 ,-4xl05 ; hence we are dealiag

with Hankel functions of large order and, generally, large argument as

well. Since k/>>l/2, the solution is essentially H 2(1)/(2)[Vw] where

w=k0 cos/k 1(l+Pz) and V=ikl/p. The appropriate expansions to use in

evaluating such Bessel functions are the uniform asymptotic expansions

(see Abramowitz and Stegun, 5 or Olver 6). For example,

H 2ei13( 4t) A I ,(e2-i/V213 t) + "' +

Al(e 21i/3 V2/3 5 b(

+ 27i/3 i 5/3 [b 2 +..
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where t3/2=,,I2 I ln[(l+l-7.2 )Z] - 1 - z 2] and Ai(u) is the Airy function.

The functions ai( ) and bi( ) are tabulated and for low orders are not

themselves prohibitively complicated. Since the argment of Ai(u) and

Ai'(u) will generally be very large, the asymptotic evaluation of these

functions is appropriate. There is, however, a problem due to the pres-

ence of the factors of e12i/3 in the arguments of the Airy functions..

In the absence of absorption this would require evaluation of Ai(u)

for Iu L> and arg(u)=±2,c/3, a region of the complex plane where great

difficulties are found in evaluation of Re[Ai(u)] and Im[Ai(u)] together.

Furthermore, the acoustic frequency and sediment layer thickness enter

in such a fashion as to frequently lead to exponential function overflow

in computer calculations. Another approach was felt to be warranted, in

view of the numerical difficulties en,.untered in evaluating these Bessel

functions in the region of interest. This view was strengthened by two

additional points: (1) incorporation of a continuously variable density

would further increase the difficulties, and (2) for thick sediment

layers it might be necessary to use a model in which the sound speed

gradient was not constant but decreased toward the bottom (and perhaps

the top) of the layer. For these various reasons work on the analytical

solution of linear sound speed models was also terminated and alternate

approaches were investigated.

3. A Numerical Approach to Bottom Loss Models

After briefly considering an approach involving asymptotic

expressions for the solution of the wave equation (WKB solution would

be an example) it was decided to construct a model based entirely on

numerical integration of the differential equation. This approach has

the important advantage of being applicable to essentially arbitrary

sound speed profiles as well as allowing a continuously variable density

to be included in a straightforward manner. Variable density modifica-

tions to the usual linear wave equation are discussed by Bergmann.
7
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A direct numerical solution of the depth separated wave

equation on an interval (O,H) requires specification of initial values

of the velocity potential and its derivative p(H), V'(H). This can be

accomplished simply by letting the incident wave have an arbitrary

intensity rather than the unit intensity assumed in conventional formula-

tions of plane wave reflection coefficients. In this formulation, the

incident intensity is that corresponding to a unit amplitude in the

substrate just below the lowest sediment interface. The value of C'(H)

is then obtained by realizing that in the substrate the velocity

potential is q(z)=AeiH z and hence p'=iHcp which yields qp'(H)=iHp(H)=iu

with q(H)=l, and u is a wavenumber appropriate to the substrate. The

usual continuity conditions yield values of q and c' in the sediment

just above the sediment-substrate interface and a numerical integration

of the "initial value" problem is then possible. The inclusion of shear

waves in the substrate modifies the fluid-fluid conditions as described

by Brekhovshikh.8

Once the initial values of the field q(H) and cp'(H) are known,

a direct numerical integration of the depth separated wave equation,

i k2  02 2
" + (k (z) - k cos G)cp = 0, becomes possible. As described in

Appendix B, a computer program has been written to implement this

approach. In the program a Runge-Kutta scheme was employed in the

numerical integration (see Shampise and Allen).9 The overall global

error of this integration process is unknown but controlled since the

local error (per integration step) is specified as a program input.

Extensive comparison with constant sound speed (Rayleigh) models as well

as with the pseudolinear model has shown that the numerical model is

operating correctly and can compute the complex reflection coefficient

to a specifie.ble accuracy.

Program inputs include the density, sound speed, and attenuation

in all materials, sound speed and density profiles in the sediment layers,

and shear wave speed and attenuation in the substrate. The conventional

Aoutput includes a tabulation of IRI and arg(R) as well as a Calcomp and/or
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a printer plot of IRI on either a logarithmic (bottom loss) or linear

(reflection coefficient) scale. In addition, a tabulation of cIp and

arg(,p) at any given set of angles, throughout the entire subbottom, can

be obtained. That no additional computation is necessary to obtain

this information is a unique aspect of the numerical integration approach.

Future development of this model will include a Calcomp plot

capability for the phase ar'7(R), as well as for cp(z). A hybrid numerical-

WKB technique, now under investigation, may significantly reduce the

program execution time, as will the conversion of critical parts of the

computer code to assembly language.

C. Sensitivity Assessment

In this section the results of several initial investigations are

given. The questions addressed include the hidden depth question, as

well as the effects and importance of a sound speed gradient, and the

importance of shear waves in the underlying basement rock. Additionally,

the effects of a density gradient are studied and the true linear gradient

model for sound speed is compared with the pseudolinear model. All

gaoacoustic parameters used in the various bottom loss curves given in

the remainder of this section are summarized in Table III-1.

1. Shear Waves and the Hidden Depths

It would be expected intuitively that if the sediment overburden

were not too thick, the presence of shear waves in the substrate would

provide an important loss mechanism, particularly at high grazing angles.

To quantify this effect, we have studied the reflection coefficient for

sediments of various types and thicknesses overlying the substrate.

Figures 111-1-4 display the effects of substrate shear waves for a 100 m

thickness of either medium sand or medium clay. The sand (or clay)

layer has a sound speed gradient of 1.2 sec -1, but no density gradient.
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The most obvious effect of shear waves displayed in these results

is the large peak in bottom loss in the neighborhood of 180, for the

clay layer. This effect is not a numerical artifact but is a real aspect

of the mathematical model having this particular set of geoacoustic

parameters. A similar peak has been observed, for a different set of

parameters, in the case of the psuedolinear model discussed earlier.

In this case, as well as all others, the "analytical" and numerical

approaches yield identical predictions.

Further examples of this anomalous low angle loss and other effects

of shear waves are given in Figs. 111-5 through 7, which show the bottom

loss for a 100 m clay layer at 25, 50, and 100 Hz. The large peak at

approximately 170 is quite evident in all three cases although it is much

broader, and somewhat lower, at 25 Hz than at 100 Hz. Since the angle

at which a ray first encounters the substrate (ray turning depth equal

to the layer thickness) is approximately 20.7°, the behavior shown here

is a clear manifestation of the wave aspects of sound. Since the

phenomenon is due to energy which is diffracted through the sound speed

profile "barrier", it is not surprising that the peak in bottom loss

is broader at lower frequencies. Other investigations show that the

magnitude and the location of this effect is dependent upon layer thick-

ness, sound speed gradient, sediment material, frequency, and shear wave

attenuation. Further investigation is underway to determine the precise

physical cause of this behavior. The near frequency independence of

the angle of the maximum loss, as well as other factors, suggest that

this effect may be due to a boundary (stoneley) wave.

One way to attack the hidden depth question is to begin with a

sediment layer of given type and thickness and to examine the effect on

bottom loss of increasing the sediment thickness. A slightly more sensi-

tive and informative test involves altering some property of the substrate

for each layer thickness and observing the effect on bottom loss. In
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addition to their intrinsic effects, shear waves provide a convenient

mechanism to switch on and off in an investigation of the hidden depth

question.

Figures (111-8-9) show the effect of shear waves at three specific

angles (200, 30°, 400) for clay and silt of various thicknesses. It

will be observed that in each case there is a thickness beyond which the

bottom loss is insensitive to the presence of shear waves or to any

further increase in layer thickness. For these situations, this depth

would in fact constitute the hidden depth. The coincidence of the

curves for fluid and solid substrates and the flattening of the curves

holds to within 5xlO-5 dB, which is on the order of the numerical error

to be expected.

The depths marked zT(e) on these two figures are the thickness at

which the turning point (ray turning depth) becomes coincident with the

lower boundary for a given angle. It will be observed that the hidden

depth is reasonably well correlated with the turning depth. it should

be expected then that the turning depth would provide a crude first

estimate of the hidden depth with an error on the order of a few sound

wavelengths. The turning depth (ray penetration depth), together with

other parameters for the sediment penetrating ray, were calculated as

described in Appendix E. There are few systematic differences between

the clay and silt cases, and in particular the hidden depth is essentially

the same. In the case of silt the curve corresponding to 400 has been

suppressed for clarity.

Finally, an alternate approach to the general hidden depth question

has been taken by Williams, whose results are similar to those presented

here. Williams' work is given in Appendix c.
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2. Effects of a Sound Speed Gradient

It is already clear that the sensitivity of bottom loss to

changes in any subbottom parameter can be strongly related to the sound

speed gradient, especially if the question pertains to changes of

a parameter deep in the sediment. As a beginning to the systematic

study of the sensitivity of bottom loss to this gradient, the effects of

increasing the sound speed gradient from 0 to 1.5, for a linear sound

speed c(z)=c(l+pz), were studied for the case of 150 m of clay overlying

a substrate (both fluid and solid substrates were studied).

Some of the results of this study are presented in Figs. (III-10

through 13). In each case except for c'=O it will be observed that there

is an angle below which the bottom loss is insensitive to the presence or

absence of shear waves. Furthermore, this angle increases as the sound

speed gradient increases. This behavior is easily understood in terms of

the increasing amount of upward refraction caused by the sound speed profile.

The most striking effect observed on these curves is the large

change in bottom loss which occurs at low grazing angles when the sound

speed gradient is changed. Since low angles are more important than high

angles for long range propagation, this effect is quite important, and

further study in this direction is indicated.

3. Comparison of Linear and Pseudolinear Models

Previously published calculations of bottom loss involving

a nonzero sound speed gradient are based on the pseadolinear model

c(z)=c(l+Pz)-1/2, whereas the bulk of the studies reported here are

based on the linear model c(z)=c(l+Pz). Therefore, it is appropriate to

illustrate the differences between these models for several situations.
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Figures (111-14 through 17) show, for a 500 m and 600 m

thickness of clay, the bottom loss based on the linear and pseudolinear

models. The sound speed gradient is specified at the top of the layer

in the pseudolinear case, and the singularity in the pseudolinear model

occurs at 521 m. It will be observed that the curves in the linear case

are very nearly identical, whereas significant changes occur in the

pseudolinear case. In fact, in the linear case the curves are

identical up to a grazing angle of approximately 48° .

The general character of the curves can again be understood

on the basis of the turning depth. In the linear case the angles at

which the turning depth becomes coincident with the layer thicknesses

are 49.3' and 520 for 500 m and 600 m respectively. In the pseudolinear

case for 500 m the angle is 79' and is nonexistent for depths greater

than 520 m. The general increase in bottom loss in the linear case

from 200 to 48°-49 ° is then simply due to absorption over the longer

refracted paths (i.e., the deeper turning points). Beyond 490 some

energy is lost into the subbottom, but the pathlengths are shorter and

the combination conspires to cause a decrease in loss. The initial peak

at 110 is caused by a 4.5 m layer overlying the 500/600 m layer (see

Williams 4).

In the pseudolinear case the curves are found to be coincident

up to 740 beyond which there are large differences. The large loss

above this angle in the 500 m case is due to energy loss into the sub-

strate. There is no increase in bottom loss at the midangles in the

pseudolinear case.

Calculations carried out for thinner layers show that the

pseudolinear model is a good approximation to the linear model for

layer thicknesses much greater than one might expect. However, since

a true linear model can be handled by numerical integration as easily

as any other model, no further effort has been made to determine the regime

of validity of the pseudolinear model.
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4. Effects of a Density Gradient

As mentioned previously, the presence of a continuously

variable density, p(z), adds an additional term (-p'/p)p/dz to the

depth separated wave equation for the pressure. Although this has

b3en known for a long time, no systematic effort has been made to

determine the effects of a density gradient on bottom loss. Some

discussion of the effects of a density gradient has been given by

Tolstoy1O '11 and by Gupta l , although no conclusions are reached which

are immediately relevant to this project.

Although only a small amount of experimental data are available,

enough is known about density gradients to warrant a theoretical study

of the importance of the effect. Studies reported by Nafe and Drake
13

14and by Hamilton show an approximately linear increase of density with

depth for several sediment types. The maximum gradient reported by
3Hamilton is 0.002 g/cm /m with typical values in the range 0.0005 to

0.0015 g/cm3/m. Although a linear model, p(z)=po(l+az), is at best

only a good approximation, the general importance of a density gradient

can certainly be determined using such a model.

The effects of a density gradient on bottom loss have been

examined for several cases. Figures (111-18 through 20) display curves

for 50, 100, and 200 m of clay overlying a rock (basalt) substrate. The

density gradient has the valuec p'=O (solid line) and p'=O.O02 dotted

line. From these curves one can conclude:

1. the effects of a density gradient are small for vost angles,

2. the effects of a density gradient increase with increasing

layer thickness, and

3. at low angles the only appreciable effect will be on the low

angle shear wave anomaly, if it is present. This effect can

be large.
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Figure (111-21) shows the results of smoothing several bottom loss

curves for a 200 m clay layer overlying a rock substrate. Again, it is

apparent that the effect of a density gradient of a physically plausible

size is small, especially at low angles. At higher angles the dominant

effect occurs between the shear wave critical angle, 450, and the com-

pressional wave critical angle, 740, of the substrate.

From these studies we can conclude that the maximum modification

of the bottom loss by a density gradient of presently known magnitude is

on the order of I dB at low grazing angles. A possible exception to

this is the low angle shear wave anomaly where a larger effect could

occur.

D. Prognosis

Both model development work and sensitivity studies have been

carried out this year. The state of this problem is summarized below

and future directions are indicated.

1. Model Development

(1) The presently existing model works well and can incorporate

essentially arbitrary profiles of sound speed and density.

Shear waves are included in the substrate, but not in the

sediment layers. A wide variety of input-output options

make the program versatile and useful.

(2) Numerical error is controlled, but a running estimate of

overall (global) error is as yet unavailable.

(3) Improvements in the computer code designed to shorten

running time are nearly completed. An improvement of

50 to 100% is expected for thick layers or higher fre-

quencies.
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(4) An effort will be made to further decrease running time

through a hybrid numerical-analytical method. This will

make possible practical application beyond the present

50 to 100 X limitation.

(5) An effort will be made to incorporate shear waves in the

sediment layers as well as in the basement.

(6) An input option will be provided so that density and sound

speed can be input as a sequence of discrete points with

no assumption concerning functional dependence on depth.

2. Application to Sensitivity Assessment

(1) The hidden depth question has been investigated and,

at 100 Hz, was found to lie within several wavelengths of

the ray turning depth.

(2) Additional work in this direction must include an

accurate characterization of the hidden depth for a

variety of types of layering.

(3) The effects of shear waves in the substrate have been

investigated and it was found that the dominant effects

occurred between the shear wave critical angle (500)

and the compressionai wave critical angle (=70°).

(4) At low angles, in the case of clay and possibly silt,

but not sand, there can occur a very large bottom loss

over a narrow angular range. The cause of this is still

being studied.

(5) The effects of a density gradient have been investigated

and found to be small. At high angles--above the shear

critical angle--the effects amount to 1 to 2 dB change

in the bottom loss. At low angles very little effect

is observed except in the vicinity of the low angle shear

anomaly where it can amount to 2 to 8 dB.
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(6) The direct effects of a sound speed gradient were

investigated and found to be very large at low angles,

indicating that refraction and absorption are quite

important. Further work is being devoted to quantify

the effects.

(7) The linear and psuedolinear models were compared and

although the psuedolinear model was found to be a good

approximation over a wide range of input parameters,

its limitations on layer thickness preclude its use in

the present studies.

(8) Future work involving sensitivity to changes in other

physical parameters will require a well thought-out method

of organization and parameterization of the data to avoid

a large catalog of curves as the only result. In

particular, following the work of Hamilton 1 '11 and

Akal, 16most geoacoustic sediment properties can be

empirically related to porosity. One approach would then

be to parameterize bottom loss versus grazing angle

as a function of porosity.
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IV. THE EFFECTS OF BOTTOM ROUGHNESS ON PROPAGATION

A. Introduction

The purpose of this task is to assess the importance of bottom

roughness in long range acoustic propagation in the ocean. Such an

assessment necessarily requires consideration of the validity of various

methods of accounting for roughness. Before discussing such methods,

a brief comment will be made on the nature of the roughness itself and

its expected effects discussed qualitatively.

For purposes of this study the entire spectrum of bathymetry

variation is divided into two classes, sloping bottom (deterministic)

and rough bottom (stochastic). The surface roughness component is the

small scale roughness which does not show up on an ordinary bathymetric

chart. The vertical relief of such roughness ranges upward to several

tens of meters although more typical values are of the order of a few

meters or less. A more detailed breakdown of roughness scales for a

region of the eastern Atlantic has been given by Clay and Leong.1 At

typical echo sounder beamwidths, the horizontal resolution in the deep

ocean basins is on the order of a few kilometers. Since the horizontal

wavelength of roughness features of the type we are considering is

expected to be on the order of a few hundred meters, this roughness will

not be resolvable with such depth sounders. Larger scale bottom

variations are considered together under the general heading of sloping

bottoms and in this chapter we shall deal with a small (stochastic)

component superimposed on these.

B. The Reflection Coefficient Approach

The reflection coefficient method is based upon two essentially

simple observations: (1) scattering from an irregular surface is
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described, relative to a plane surface, by a scattering (reflection)

coefficient, and (2) it is possible to replace a direct calculation of

the field in the bottom material with a reflection coefficient and

deal with the field in the water only. This is possible within either

a ray or wave theory approach. A consequence of these ideas is

that scattering may be accounted for in a propagation problem by multi-

plying the ordinary reflection coefficient by the scattering coefficient

and treating the product as a modified reflection coefficient.

This view, if correct, would indeed be useful because it allows

separation of the scattering and propagating problems. The scattering

problem, though still difficult, is much better understood than the

combined scattering-propagation problem. Moreover, there is a body of

empirical knowledge which suggests that this view is largely correct.

Initial work on this problem was to examine the range of validity

of the underlying scattering theory, to use it for making estimates of

scattering loss which could be used in propagation loss calculations.

The remainder of this section will discuss the conventional view and

what can be learned from it. The last section of this chapter will dis-

cuss alternate approaches.

A systematic and careful effort to derive the (coherent) scattering

coefficient for penetrable rough interfaces was made 
by Boyd et al.

2

After writing integral expressions for the scattered and transmitted

fields, using continuity of pressure and normal component of velocity,

and making a single scattering assumption, these authors arrive at an

expression for the scattered field which contains, in addition to con-

ventional scattering terms, the ordinary reflection coefficient. However,

in this case, it is referenced to the local surface slope, not the (zero)

slope of the mean plane of the interface. Far from the interface the

scattered pressure field in the specular direction, for a point source,

is given by
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Sik(R 4+R )
ik e -i 0 + k7 R(e,n) [q cos e sin e]dx dy, (i)

s 21t RoRI

where the surface height is t(x,y) and T=t/6y, R0 and RI are distances

from source and field points to the area element, and R(en) is the

usual reflection coefficient referred to the local slope n. The coherent

field is then given by

<ps> = <e-ih7t> Lk f dx dy e k(Ro R)1 <P( ) cos e -sin e]>

(2)
= <e-ikyt> <R[n cos e - sin e]> P

0

where y = 2 sin e and <e-ikyt> is the characteristic function of surface
relief, and p0 is the pressure reflected from a perfectly reflecting

plane surface (image solution).

The important points to be noted are (1) that Boyd et al. do not

obtain the "expected" result <p>-<e -iht>Rp o with R the usual reflection

coefficient; and (2) if R(en) were not a function of q the usual result

would be obtained since <j>=0. This last conclusion does not hold away

from the specular direction due to shadowing corrections which make

<r> O. Another oddity of this theory is that when it is specialized

to a perfectly reflecting interface, IRI=l, there remains an anomalous

factor of 1 - <q> cot er which, due to shadowing corrections, becomes

unity only in the specular direction.

The presence of slope dependent terms both in R, and in the

scattering slope corrections as well as the concomitant shadowing

corrections, are the distinguishing aspects of this theory. Due to the

difficulties of evaluating the average <R(e,q)[ cot e - 1]>, Boyd et al.

were only able to examine <ps>/Po in a very rough approximation which

broke down near a critical or intromission angle. In order to test
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more fully the dependence of <ps>/p° on the distribution of slopes and

other parameters, a computer program was written to carry out numerically

the one-dimensional integral yielding the slope averaged term

-<R(e,q)[q cot e - 1>. Apart from a factor of <e-ikt> . this is the

roughness dependent reflection coefficient. In Figs. (IV-I-2) appear

several examples of bottom loss where this roughness dependent reflection

coefficient term has been neglected, not because it is unimportant, but

for the purpose of displaying the effects of the slope dependent terms. The

sediment-to-water sound speed ratio is denoted by N0 and the sediment-to-water

density ratios are given by p2/pl. In all cases the rms slope, s, is

14° for the rough interfaces (and 0* for the flat), which corresponds

to what would be commonly thought of as a very rough surface. The ratio

a/P is the ratio of the imaginary to the real part of the wave number

k=P+ia. It is clear that the effects of surface slope on bottom loss

are appreciable and moreover that this effect is more pronounced for

larger values of absorption (larger a/P). At high angles the curves

for flat and rough sur'faces converge rapidly.

Of course, the true bottom loss, according to this theory, is

obtained by multiplying the factor plotted in Figs. IV-l, IV-2 by the

additional term <e- ihy >. For a normally distribited surface this

equals e-g/2 where g=(kya)2 and a is the rms surface height. For

example, at 100 Hz and 100 for an rms height of 1 m this factor is

approximately 0.1 dB and therefore produces only a small additional

modification of the plotted bottom loss.

The large effect of roughness shown in Figs. IV-1 and IV-2 is, of

course, reduced considerably when the rms slope is taken to be a more

realistic figure of a few degrees. Nevertheless, the fact that surface

slopes can cause such large changes in the reflection coefficient is

disturbing and at variance with intuition. Moreover, the effects of

shadowing are not necessarily small since, without such corrections, the

scattering coefficient is unbounded near 00. The shadowing "corrections"

are therefore seen to be necessary to make the theory well defined and

are not necessarily small.
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It is characteristic of physical theory that a small correction

in the development which leads to a large change in the prediction may

be indicative of an error. The problem in this theory may be the

single scattering assumption which strictly requires zero surface slopes.

It is quite plausible that, to remain consistent with the original single

scattering assumption, the surface slopes must be taken to be zero

thereafter. If this is done the result for the coherent field is simply
>_--ih7A

<ps -<e >o, the classical result.

From the point of view of simplicity and predictability, it would

be desirable for the classical result to be correct and useful in pro-

pagation modeling. The classical coherent scattering coefficient can be

made to agree quite well with scattering data. For example, Boyd and

Deavenport3 show such a curve for scattering from pressure release

surfaces, and the agreement is excellent. The impact of such close

agreement is lessened by the realization that the results are quite

sensitive to the choice of the distribution of heights. Nevertheless,

the simple coherent scattering coefficient is the best founded result

of scattering theory and it is important to know just what its limita-

tions are and how far its usefulness extends.

C. Further Considerations

To understand what is entailed in such a reflection coefficient

description, it is helpful to discuss qualitatively the expected physical

effects of bcumdary roughness on propagation. From scattering theory

we know that the scattered field above the interface is composed of a

mean field <> and a stochastic field * such that the mean (coherent)

field is highly concentrated in the bpecular direction. Moreover, the

stochastic (incoherent) field, although contributing in the specular

direction, is more diffuse and becme increasingly so with increasing

roughness.
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In a propagation problem these simple facts imply that acoustic

energy encountering the bottom is partitioned in two ways: the first

is thp division into mean and stochastic fields, whatever the angle;

the second is between specular and nonspecular components. For a slightly

rough surface (RaLeigh parameter of the order of unity or less) the

coherent field may be regarded as being identical with the specular

component, whereas the nonspecular component is entirely stochastic.

If this assumption is valid, it therefore follows that the stochastic

field enters the propagation theory through mode-mode coupling or, ir

ray theory terms, multipath conversion. This relatively simple picture

is complicated by multiple scattering in the vicinity of the rough

surface, which causes the fields to be coupled.

This brief discussion brings out two significant features of the

problem which are often lost in an eagerness to apply some simple :'eflec-

tion coefficient formula. Within scattering theory itself, it is clear

that the distinction between mean and stochastic fields is of paramount

importance, as is the fact that energy leaving the rough interface will

do so in all directions, not only in the specular one. The most serious

step in applying scattering theory results is the restriction to the

specular direction. if this is valid, then for slightly rough surfaces

the coherent field will dominate in a scattering situation.

The only remaining problem then is to argue that these results can

be applied in a propagation situation. The extension is not necessarily

possible (much less simple) since scattering is mathematically an

exterior problem, whereas propagation is an interior one. The approximate

solution to the field in the exterior case is being asked to provide

an appropriate boundary condition in the interior case.

These questions have not yet been satisfactorily resolved, although

it appears that there are tools available which can be used to at least
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provide partial answers. A potentially useful approach to the problem

of obtaining a correct boundary condition for the coherent field was

the work by Lysanov on pressure release surfaces. This work was

extended to the two-fluid case by Kuperman.5 Related work in this

direction has also been reported by Wenzel.6 This approach is not

based upon scattering theory, but rather seeks to replace the exact

boundary conditions on a surface z=H+ (xy) with approximate boundary

conditions on the mean plane z=H. The results are to be found only to

lowest order in t, the stochastic function describing surface relief.

The power of this method is that it indisputably sets out to obtain a

boundary condition on the mean plane rather than extending an expression

for the field at a distant point back to the surface. Also, there is

no difficulty, in principle, in treating nonisovelocity water, and

indeed Lysanov considers a pseudolinear sound speed model as an example.

The results obtained by Lysanov and Kuperman were applied to a propaga-

tion problem by Kuperman and Ingenito,7 who considered a shallow water

case with a rough sea surface and a flat sea bottom. The results of

these authors agree with those of Lysanov in suggesting that the effects

of roughness are heavily influenced by the sound speed profile as well

as by the power spectrum (or correlation function) of surface relief.

It is a characteristic feature of this perturbative approach that

the boundary condition (reflection coefficient) for the coherent field

does in fact contain the correlation function of surface relief. This

is in marked contrast to the scattering theory approach which requires

knowledge of only the distribution of surface heights. The details of

the relationships between these two approaches have not been explored

nor have the limitations of the perturbative method been well defined.

Nevertheless, it is clear that this later method offers potential for

considerable progress in this problem. A systematic effort to exploit

the method is underway.
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V. PROPAGATION OVER A SLOPING BOTTOM

A. Introduction

Broadly speaking, the sloping bottom problem is one of determining

the influence of range changing bathymetry on acoustic propagation in

the ocean. As mentioned previously, the general problem of bottom

topographic effects has been broken down into the sloping bottom problem

and the rough interface problem. The sloping bottom problem then deals

with bathymetry variations which would show up on ordinary echo sounding

apparatus (midocean ridges, abyssal hills, seamounts, continental slopes

and margins, etc.). Of these types of bathymetry variation, we have

chosen at the beginning to concentrate on the influence of continental

slopes and margins on propagation both over deep water (basin) and into

shallow water area (continental shelves). The archetypal sloping bottom

problem, for present purposes, is then described by a bathymetry which

displays a smooth decrease in water depth from a large flat bottom

region (basin) through a gently sloping region to a steeply sloping

region (continental slope) into an extended shallow water region

(continental shelf).

Having set out such a problem it is necessary to ask what tools

are available to investigate sound propagation in such a region. Several

of the computerized propagation models developed at various laboratories

are sufficiently powerful to attack some aspects of such a problem. Ray

theory models, TRIMAIN and GRASS, developed at NRL, can carry out ray

tracing in a range changing environment, and can compute transmission

loss versus range. Another is the recently developed parabolic equa-

tion model. At least two versions of this model have been developed:

one at the Acoustic Environmental Support Detachment (AESD) of ONR and
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another at SACLANT ASW Research Centre. There are other such models,

some of which are to be used in future work on the sloping bottom

problem. During the first year, TRIMAIN and the AESD parabolic equation

model have been implemented at ARL. They are being used in an assessment

of sensitivity (of propagation loss over a sloping bottom) to variations

in the bottom description.

A second approach to these problems uses more analytical methods

to extract information in the case of simplified geometries and sound

speed profiles. These studies are useful for calibrating other methods

such as computerized propagation models. Some effort is being made to

use the mode-mode coupling approach of Pierce and Milder.2 Although

this method is in principle rather general, in practice it may be

restricted to the isovelocity case (when the bathymetry is range

changing). Work in this direction is therefore to be regarded as a

study of the purely geometric effects of the sloping bottom problem.

The interaction between these geometric effects and refraction effects

caused by a variable sound speed are being studied using the computer

propagation models. The last section of this chapter deals with some

aspects of the work on a coupled mode approach.

Before moving on to the specific details of the -.,ork, it will be

worthwhile to discuss qualitatively the effect of a sloping bottom on

propagation. These effects can be divided into five categories, not

all of which are independent or separable:

1. megaphone .nd inverse megaphone (funnel) effects,

2. mode-mode coupling (multipath conversion),

3. interaction of variable sound speed and bathymetry,

4. interaction of variable sound speed, bathymetry, and bottom

reflection coefficient, and

5. partitioning of energy between water and bottom paths.
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The megaphone and funnel effects are simply changes in acoustic energy

density due to changes in water cross sectional area at any fixed range.

This can occur - and indeed will be maximized - in the case of a

perfectly reflecting bottom. These effects are two examples of a more

general class of effects referred to as mode-mode coupling, or in ray

theory terms multipath conversion. In this process, for example, a

particular mode traveling up slope into shallower water is converted

to various higher order modes. The ray aspects of such a process are

depicted schematically in Fig. V-i, which shows the effect of a funnel

geometry of changing slope along the funnel on three initially parallel

rays in the case of a constant sound speed. The process depicted in this

figure is an important component in the so-called slope enhancement effect,

a specific example of which will be given in the next section.

The interplay between refraction due to a variable sound speed and

reflection from a bottom slope can be quite complex, especially when

the bottom is not perfectly reflecting but has a reflection coefficient

that is variable with angle. One particularly simple example of the

interaction between a variable sound speed and bathymetry is depicted

in Fig. V-2. In this figure it is supposed that there is a sound channel

and a single axial ray is shown reflecting from the bottom in the case

of three different slopes. Because of the negative sound speed gradient

in the near surface region, there will be for fixed axial ray and shallow

water depths an optimum slope for the transmission of energy into the

shallow water region. This situation is depicted in the middle illustra-

tion in which the ray has an upper turning point that is tangential to

the sea surface. Due to the large number of bottom bounces in the first

and third cases, the sound intensity in the shallow water region due to

axially transmitted energy will be lower than in the "optimum" case.

it is not difficult to see that the optimum bottom slope, e will be

given by e = 1/2 cos-'[C(A)/C(o)) where C(o) is the sound speed at the

surface and C(A) the sound speed on the axis. This discussion is

adapted from Urick.
3
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The more complex and realistic situation, where the reflection

coefficient also is variable with angle, is more difficult to illustrate.

It is clear, though, that a bottom loss critical angle on the slope

will play a crucial role in determining the sound transmitted from deep

to shallow water (or the reverse). One goal of the ongoing effort is to

develop an understanding of the role played by such a critical angle

in relation to the source depth, sound .annel axis, and shallow water

depth.

B. Investigation and Use of Existing Models

During the past year some effort was made to implement appropriate

models for use in several tasks of this investigation. The case of a

range constant environment could be adequately treated by the FACT model

which had already been implemented at ARL in another study. Various

specialized models were developed incluming RANGER (EIGENRAY) and

BOTLOSS. (These are described in Appendices A and B.)

Study of the case of a range changing environment (sound speed

profile or bathymetry changing with range) requires other types of models.

Accordingly, the ray model TRIMAIN that was developed at NRL was adopted

for use in this project, as was a current version of the parabolic

equation model developed at AESD. The next subsection deals with the

implementation of these models, and the final subsection with an example

of their application to a particular problem.

1. Implementation of Models

The ray trace model TRIMAIN is discussed 
in detail by Roberts. 4

This model functions by tracking a large (specifiable) number of rays

from the source through a range changing environment (sound speed and

bathymetry). Various types of intensity (coherent, incoherent, range

averaged, depth averaged) are obtained by an interpolation procedure

between rays bracketing a receiver in depth.
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The report by Roberts contains a complete listing of the

program which was used directly to obtain a machine readable version.

The original program was written for a CDC 3800 computer. Due to the

large storage requirement, the program was adapted to run on the CDC 6600

located on the main campus of The University of Texas at Austin.

After exhaustive checks and examination of test cases, the

program has been determined to be running correctly in nearly all its

modes. In particular, the ray trace and depth averaged intensity modes

are operational. Figures V-3 and V-4 allow a comparison between TRIAIN

and FACT for a particular horizontally stratified test case. For this

case, the bottom loss is 3 dB at all angles and the sound speed profile

has a sound channel axis at 801 m. The agreement is seen to be good,

and the small discrepancies present are attributable to the different

modes of intensity calculation used. The report by Roberts on TRIMAIN

contains a rather complete set of test cases for the programs various

modes. These have been checked in detail with the ARL version and for the

operational modes found to ba in complete agreement.

At the present time only printer plot outputs are available

for the ray trace and intensity modes. Figure V-5 shows an example of

a ray trace output from TRIMAIN (the sound speed profile is also shown).

The bathymetry corresponds to a transition from the edge of a continental

shelf to a deep ocean basin. It should be observed that the effects of

the double sound channel of the sound speed profile show up clearly in

the ray trace. The coupling to the lower channel occurs via multipath

conversion on the slope. This same bathymet-ry was also used, with

source and receiver locations interchanged, in the study reported in

the next subsection. Work is in progress to add a Calcomp plot capa-

bility. The ray trace part of TRIMAIN is being adapted for use on

ARL's CDC 3200 as a ray tracing program, without intensity calculation

capability. This will prove a valuable diagnostic tool for the sloping

87



go

0

w

040

-L z-

-i-N w-

000

o-o
j

CL C4

IX-m

0 0 0 0 0 0 0

00~1 0 111)

-L 
- 4

sP -ssol NOISSIWSNYH1J
ARL - UT
AS-76-98
KEH - DR
2 - 4 - 76

88



04

.0

9-..

w

CI-.
00

w

U. '

040

10 L/0

0'

N I-

WYI- Cd

I~~L I- M~ U (

00 0 0 0 C0 0 0
0D 0 9-

9p - SSOI NOISSIWSNYHLL
ARL - UT
AS. 76-99
KEH - DR
2 -4 - 76

89



iA. 152 0 C2
4H I lo 2 2 NRI.9h0444~.h

it ,4 1 12 0 2 INN 'eVO ~ an 00.4 4140.

4k 1 7 0 0 21 NY
4
4NI400440.~fuO -

2 ) 4 4 NY 0

AN 4 7 I"2 A Ay _F,'.g 4ooAnb"o is.m

01 Z"S 11 z,,.i41I.sI4 AV'~l4

2 01 1 A4 UP AbI'''N4ANI4~i

go iw 2Aq YA1 o

I Qv2it0 N qO4dwp$Aqw1, AA0L4.hI
Cw i2 1 Aw2 1N 4 w044.ONq .44144 004.

A to 1 3 12 21 0A040b.2N0u0~4~l4
A A'2 2 2 02N 400..oooooof.

4 A 1t of I OORNNNNON44~2
*w N o NAM Ra 0p iNl N441040 00400C,

r 4? 3 21 2w 0NAVA4140IbN40NN00.100
a 4 A A11 0104Pbi4..4~o0'~h.20u

1 r 2 1 2 04N.A04NN4
4
0900.04bJ

3 v4C W-4990 WH0N A044o4.o.4w4,

51? 2MA NW A' CA ......00r00h404040(... C
z2I02 I 1i 11 N404000440.4W goAQ w e.oo

0 2 0 At 2N I" 'I"40NNON44NA4A.4 a'20g u 0

22( 01 2 1,pIHO61 I 040404900.N0A0N 0000 (I.24~j~ 0 10wl t

4 I 2 220 PON4kA94I1N4NIUP.44N,.,1-440 >)
A N 1 20 z1 0 V .4Ohw4'wboou..ooa. A A

AN 1 20 12NY 0 964NR41 W044PH0000404An.I 4 n 4 m (
44 1 0 C3 0o ZNV 009b044 FI-44'~04404

1 0 t 1A 2 ? 2e "00I400NO"I220b4.4OhAoN.1
1 0 1 "2 1 2 INON.NONN0ONNY.2'.. - /

50 21 2 A 
900020NNO#oC00io

2 10 I 2 24 1 el 0vlw N940N N44904 A9ONNW"6qf'0PN . '*- f

2 or 5z 4 I AP.Y. 4 A0140.'NO OttoQ.4qy'Hp 24z o0 151 4 V 0 H~w1 40000N4 9 qa a- ANY PA U00.' 414,,
0 2 724,, V 0 44N004400000914$AW$044O44 .' N r ,.N4

0 JoN It0N52o1 k An 01R4100010000*.200NN.q45
04 . 10 1 i r 1 1NSNA 111 04AAiUOnO a 9 All As IPA AR A Q1W A4'2o A

S 1 20 21 0 O0NN~O4.0N400441iI201og'
A W ' 2 2 1 0w 00050 R444N00100144.. opolC\1.Is

$ lid1 5 0 12 0 2. N005901'440244.4044Y 45'no4o "00~o

* .1 2 21 0. :11 2 0 2 11, 'l 000000NRN.Y.00N0000404' A0044000',49Nf4.A '
5" I3 A 0 12 0 00 A oo : 0 000000d041 0 0 N:w l020I 00b9d BOB 40,I.o~oNr.
I $10 0 a 94HN000 900C0004N0004240.pbsu o..,
or ? 2 A 126906 M 011 0g OOOONI500IOOO40NOINOINUONO0 p A04N00

04 14 4: OOOO4000000004000YN00001040N40054 W404N.
3 01111 H, 60 YUY9a62BgR %942:0 2 0999999i o:9 Allosllooooo9004w bTA ohlowoeo4 Nooo'AA 4Owv~i.44oge*

it2 0BNw 0000gSb000b00NboqbIu4.m o .goA.o...
l". 12 2o NI 01 l OO0.ik140 04 191 9N .10,1St $, 1, 9 1000N9 o0I,2.1 9, 4P04 4 I isp 119.. A qo aa . 99poAAo .w.srhnfonA

01 2 0 A 4445000044509400N0000500500450004440004I.qqrnNB'.O~eo4oa61t12

O 2 0 4 5 1 i 0 0 0 4 1 0 
1 

0 0 0 
0 

4 i 2 4 0 0 0 8 0 0 0 0 9 9 0 B0 0 0 S N 0 0 0 51. 0 0 N 0 .4 ' Y C S .4A A A A Aon n '4 r ,i y o o

0b N 21102 4 qo

C, 4)C'CC

v) 4  u C)C n

2) 0

3.4 If)

90 AS- 76-180



bottom problem; the cost is low and the machine has a bhort turn

around time.

In addition to TRIMAIN, the parabolic equation model has been

implemented. This particular version of PE treats the cases of range

changing sound speed profile and bathymetry and can also treat the case

of bottom loss which is zero below a specified critical angle (and

essentially infinite above it). Although this model is presently

running on the ARL computer, the st-Frage requirements are such that

nearly all output manipulations must be handled by a separate program.

Output features include a complete map (printer plot) of the sound field

at all depths and ranges along with the bathymetry, printer plots of

intensity versus range for selected receiver depths, Calcomp plots of

intensity versus range, and a range filter which may be applied to

either plot type.

Work is now in progress to convert the program to run on the

UT CDC 6600 machine. This is being done for two reasons: (1) to use

a larger FFT which will permit application at higher acoustic frequencies

and/or larger water depths, and (2) to obtain additional accessible

storage which will be used to add features such as depth average to the

program.

Figure V-6 shows a typical output from the present implementation
of the parabolic equation model. The bathymetry and sound speed profiles

are the same as for the trace given in Fig. V-5. The receiver depth is 18 m

and the source depth 715 m. The output shown here is unfiltered and the

apparent multiple vaLuedness results from the compression of a number of

points into one range interval by the printer plot routine. The con-

vergence zone structure of the intensity is clearly evident as is the

highly detailed fine structure characteristic of a wave theory.
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2. Application to a Specific Problem: Slope Enhancement Theory
and Experiment

Although much of the work on the sloping bottom problem is

of a hypothetical nature, i.e., sensitivity as'essments without

reference to a specific experiment, the large amount of acoustic propaga-

tion data acquired in recent years allows meaningful comparison of the

models and specific experimental results. Several sets of experimental

data have been examined for slope effects. One such piece of data has

shown a strong slope enhancement feature. These data are shown only

to encourage the examination of model runs to determine the important

parameters of the problem. Detailed comparison model runs and data will

be made at a later stage in the study.

Figure V-7 shows some 93 Hz propagation data from a recent

exercise in the Northeastern Atlantic. The receiver was located at

zero range on this plot and at a depth of 71.5 m. The track of the

continuous wave source, at a depth of 18 m, passes from deep water, over

the continental slope, and into the continental shelf region. The

bathymetry and sound speed profiles are shown in Fig. V-8 with the

receiver located at the range point marked "B". The obvious peak in

the data, centered at approximately 190 rim, corresponds to a source

location at approximately the top of the continental slope.

For model calculations relevant to this situation, the

bathymetry and sound speed profiles were modeled as shown in Fig. V-9.

The same sound speed profile was used throughout the track since there

appears to be little variation over the range interval of primary

interest.

Figure V-10 shows the results of several TRIMAIN runs using

this model bathymetry and profile. To determine the maximum possible

slope enhancement that could occur in these circumstances, the slope
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itself was made to be alternately a perfect reflector and a perfect

absorber. All other regions of the bottom were modeled as possessing

a reflection coefficient with a critical angle of 5° with zero loss

below this angle and 3 dB loss above.

Several important features are shown in the curves of

Fig. V-10, as follows.

(1) All receiver depths show a slope enhancement with the

enhancement increasing with decreasing depth. The 18 m location is

just inside the surface duct which ends at 20 m.

(2) The enhancement begins at a location corresponding to

approximately 40 O up the continental slope and peaks at the top of

the slope.

(3) Although the "enhanced energy" decays with distance

beyond the top of the slope, the decay rate is nearly the same in all

cases. The apparent increase in this rate with increased receiver depth

is actually due to differing slopes of the unenhanced curves. The

decay of the enhanced energy is probably a manifestation of multipath

conversion to steeper ray paths which suffer more loss when they reflect

from the bottom. In the loss model used for these calculations, this

amounts to conversion from below to above critical angle for the bottom

encounters. This model is probabl3( most useful for examining some

features of the propagation in the deep w.ter and over the slope.

Accuracy of the results of this ray theory model in the shallow water

portion of the path are still to be tested.

The same bathymetry and sound speed profile were used in a

series of runs with the parabolic equation model. Figure V-11 is a

plot of transmission loss versus range. The corresponding bathymetry

is also shown. The bottom loss was modeled as having a 50 critical

angle (with zero loss below this angle) everywhere except on the steep

98
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slope (170 to 180 nm) on which it had a 200 critical angle. The slope

enhancement is similar to that shown by the TRIMAIN model. The differ-

ences between the PE and corresponding TRIMAIN model runs are (1) with

the PE model it is not possible to obtain a perfect reflector at all

angles, and (2) above the critical angle the TRIMAIN runs were made

using a 3 dB loss, whereas in the PE model the loss is 50 dB. The raw

parabolic equation output has been range filtered using a 2 rm window

(equal weighting) and a step size of 0.5 nm.

Figures V-12 through 14 show the results of several parabolic

equation model runs for the cases of 00 (perfect absorber), 50, 100, and

200 critical angle on the continental slope with a 50 critical angle

elsewhere. The three figures are for receiver depths of 18, 91, and

149 m, respectively, the same depths considered in the TRIMAIN model

study. The propagation loss curves are displayed with 20 dB offset per

curve for graphic clarity. It can be observed that the enhancement

increases with decreasing receiver depth. Also, it is clear from any one

of these figures that the energy encountering the slope and contributing

to the field beyond the slope does so largely at angles belo, 100 or 15'.

In other words, there are only small differences between 00 and 50

critical angles and between 150 and 200, but between 50 a'.d 150 the

differences are large.

Figures V-15 and V-16 show a corresponding calculation of

transmission loss versus range, for 18 m, 91 m, and 149 m receiver depths

and 00 and 200 critical angles on the slope with source depths of 715 m and

2467 m, respectively. The receiver depth dependence of the enhanced

energy is much less in the case of the deep source.

Unlike the TRIMNEN model runs, the 715 m source case does not

display a decay of the enhanced energy to the level of the unenhanced

case. A single TRIMAIN run, using the same bottom loss model as used

in the PE runs (50 dB loss above 53 in the shallow water regime) shows
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only a very small increase in loss beginning just beyond the top of the

slope. The structure and the flattening of the curve shown by the PE

model runs are not present in the TRIIIAIN runs. Generally, the two

models seem to be in good -[alitative agreement in the parametric

dependence of the enhancement on receiver depth and bottom loss critical

angle on the slope. The major disagreement arises in the shallow water
regime.

Continued use of such tools in sensitivity studies for sloping

bottoms will scrve the dual functions of revealing the capabilities

and deficiencies of existing models, and of quantifying the sensitivities.

C. Other Theoretical Approaches: Feasibility Studies

In addition to the computer model approach just described, a

more analytical approach was also taken. The purpose of such an effort

was twofold: (1) to obtain tractable analytical tools which would yield

some information about the sloping bottom problem, especially slope

enhancement, without actually solving the entire problem, and (2) to

provide approximate solutions, whose regime of validity is known, and

to use these solutions to test more detailed computer models, such as

those just discussed.

1. A Unified Approach to Propagation and Scattering Studies

An initial investigation was made of the feasibility of using

the integral equation approach of Vekua5 and Kupradze. 6 This approach

uses as a fundamental solution the Green function for unbounded media

and then fits the appropriate boundary conditions in a self-consistent

way using integral equations. In the usual ocean geometries there would

be two coupled integral equations.
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A primary advantage of this approach is that the resulting

dual integral equations, after exploiting all available symmetries,

may be more susceptible to approximation or numerical integration than

the corresponding differential equations (wave equation). Experience in

other areas of physics such as many-body theory and quantum scattering

theory lends credence to this belief (although nothing in such experience

suggests that such a method would be simple or easily carried out).

Another virtue of this approach is that it would verify

propagation theory and scattering theory in such a way that propagation

over a rough bottom ocean would pass smoothly into scattering from a

rough ocean bottom as the sea surface was moved awaf toward infinity.

Such a unification would be a considerable advance as it would clear

up much of the confusion about surface effects in propagation. A specific

example of this type was in fact worked out: the case of water bounded

above by a flat pressure release surface and below by a statistically

rough pressure release surface. For vanishing roughness the usual Green

function was in fact recovered, and when the water depth became unbounded

the usual scattering theory results for the coherent field were obtained.

Analysis of the finite depth-rough surface case led quickly into the

further reaches of multidimensional Wiener-Hopf theory.

The complex nature of solutions to be used in this approach

prompted us to explore other possibilities. As a general recommendation,

the dual integral equation approach seems worth pursuing and with con-

siderable effort it could result in a significant breakthrough.

2. Mode-Mode Coupling Theory

Another possibility that was investigated was the mode-mode

coupling theory described formally by Pierce I and Milder. 2 Unlike the

previous (dual integral equation) theory where mathematical under-

pinnings are secure and well founded, mode-mode coupling theory is

essentially based on an ansatz, which, in real problems, can never be
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true but may be an adequate approximation. Systematic efforts to

exploit this approach, especially in the case of range variable bathy-

metry, are limited.

The basic idea of the approach is easily understood. With a

rectangular coordinate system in which the z-axis is measured downward

from the sea surface, one first presumes that at a given range location,

(x,y), the depth separated wave equation can be solved for the normal

modes pn(z;x,y). It is then asserted that the solution to the range

changing problem is given by cp(x,y,z)=* n(,y)q (z;xy), where the n

have yet to be determined. Upon assuming that the p n are orthonormal

on the interval (O,H(x,y)), where z=H(x,y) is the ocean bottom, sub-

stitution of this assumed solution of the original wave equation yields

a set of coupled differential equations. In principle this formulation

can treat either range changing sound speed--for which it was developed--

or range changing bathymetry, or both. In subsequent discussions it will

be assumed that the sound speed does not change with range since this

defines the basic sloping bottom problem without additional complications.

Before considering the possible application of these ideas

to the problem at hand, five important points concerning the basis of

this formulation need to be discussed.

1. Concerning the fundamental ansatz, if the velocity
potential cpn satisfies 'he general impedance condition n+7( i

on z=H, then the qpn form a complete set on this interval. In this

case, which includes pressure release and rigid surface, the assertion

about expansion of cp is trivially true since the *n are nothing more

than the inner product (cPnqxn), which is to say the coefficients in

the expansion of q in a complete set ((pn

2. In the slightly more realistic case defined by the

boundary condition ( n +7(&n)/n=O on z=H where /6n is the normal
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derivative, the boundary condition itself is nonseparable and the

partial separation effected by the product 7nn cannot be carried out.

In the case of a constant slope this point can be evaded by redefining 7

and thereby make a return to the case considered in (1).

3. In the two fluid case there is always a continuous

spectrum of eigenfunctions in addition to the discrete ones considered

here. Moreover, the eigenfunctions of the two fluids taken separately

are not complete in their respective domains. Even though in a range

independent environment the continuous spectrum can be ignored at long

range, it is not obvious that coupling between the continuous and the

discrete spectra is small in a range changing environment. Physically

it seqms quite plausible that a single discrete mode, upon encountering

a change in water depth, may couple some energy to the continuum and

thereby transmit energy out of the water column.

4. In any case, if one ignores these comments and proceeds

to apply the theory in a case when the bathymetry changes sufficiently

slowly so that an ur.zoupled mode assumption is valid, then a tractable

theory is obtained even in the case of a sound speed variable with depth.

The equations for the *n separate and the remaining equations seem to

1;e amenable to solution by a variety of means.

5. A possible method of solution to the equations for * n is

to assume that in the (x,y) plane all changes are sufficiently slow to

permit application of ray theory. If this is done one obtains essentially

the horizontal ray theory of Weinberg and Burridge.
7

In order to illustrate the type of problem which seems tractable

using this method, we shall consider the case of a constant sound speed

with both the ocean surface and bottom treated as pressure release.

Extension to a locally reactive surface defined by pn+yNn/ z=O is not

difficult. The sea surface is considered to be at Z=O, and the bottom
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is defined by Z=H-,(xy). The wave equation for the Green function

(v 2+k2)G=-4gb(r-r ) is assumed to have a solution of the form

G = 4n(Xy) Cpn(Z;XY) n*(zo;xy) , (i)
n

where the t n satisfy the depth separated wave equation and are easily
found to be

CPn(z;x,y) = [2/(H-t)]1/2 sin(knz) (2)

where kn=n-tz/(I-t), and t=t(x,y). The (*nI are easily shown to satisfy

the equations

I 7 1
in+ (k 2-k 2-A )'Vm -2n8r(x-x.) 6(y-y 0 )

62 y 2 + mn

(3)

[An n Tn +Cn 
Y]

where the coupling coefficients A mn, B r and Cmn are given by

mn 2 6 n

BM 2f dz IPM* Tx-(5)

C =21 dz cyn (6)
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It should be noted that, due to the completeness of the n)Y

the development is thus far exact.

If the bathymetry is sufficiently slowly varying, one might

hope to ignore the mode-mode coupling terms, or at least regard such

an approximation as yielding the first term in the expressions of 'm in

powers of the slope t'. This approximation will now be introduced

together with the more specialized geometry where t is independent of y,

as would be the case in a treatment of a continental slope. In this

case, Eq. (3) becomes

mx + 82 + (k2-k m-A mm) m -21t(x-xo) 8(y-y) (7)

where A is .n by
mn

Af(x) dz 2 (8)

This equation can be immediately reduced to an ordinary differential

equation by taking a Fourier transform with respect to the y variable.

Thus

d 2*m (X ) + (k2 k 2 -A - _2) 2 1r e 0  8(x-x (9)

dx
2

where

*m(X7) = f_ dy ei~y *m(X,y) (10)

and where a radiation condition has been imposed for I YJ-+'.
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This is as far as it is possible to go with the formal

development; further progress can be made only by choosing a specific

fcrm for t. Since it is not our purpose here to investigate any one

problem in detail, but rather to comment on the applicability of this

theory to a class of problems, this final step will not be carried out.

It should be noted, however, that at worst we now would need to integrate

Eq. (9) numerically after first computing Amn(x) in a specific case.

It is reasonable to ask about the modification of the foregoing

development in the case that the bottom is not pressure release but

rather satisfies the impedance condition cpn+7(6?n)/6z=O. This is more

realistic than the previous case, since now the bottom would display a

reflection coefficient variable with angle (and frequency if desired).

In such a case the important problem of the interplay between ' and

the reflection coefficient could be studied.

In the case of such an impedance condition, the only

modification to the foregoing results is in the vertical eigenvalues kn

which are no longer nA/H-t. In fact, the kn are now to be determined by

solving the transcendental equations tan k n(H-t)=-k ny. Such an equation

can be solved numerically. It is important to note that y may be a

function of % and y. In particular it would be possible to use a

different reflection coefficient on the continental slope than on the

deep ocean floor or in the continental shelf areas.

In short, then, to the extent that the bottom can be approximate&

by an impedance condition it appears that considerable progress can be

made using this theory. Once the uncoupled mode solution is obtained

in a particular case it is a simple matter to obtain the first-order

corrections due to mode-mode coupling by perturbation theory. This line

of research will be pursued in the following year.

112



A

Other work has been carried out under this contract by

Claude W. Horton, Sr. This work has been chiefly directed toward

obtaining a useful solution for the wedge geometry (constant slope) i:

the two-fluid case. Such a solution would have considerable practical

utility, not so much for the wedge itself but because a wedge could be

attached to a rectangular basin and thus provide a useful model of an

ocean basin leading into the continental shelf. This work is summarized

in Appendix D.
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APPENDIX A

FIIDING EIGENRAYS IN A HORIZONTALLY STRATIFIED ENVIRONMENT

In propagation problems involving interpretation of specific influences

such as the magnitude of bottom interaction effects, it is often useful to

decompose the propagation and identify intermediate parameters, such as

bottom interaction angle, for specific eigenrays of the problem, Program

RANGER is designed to find the eigenrays (rays connecting a source and

receiver) for a series of receiver ranges given: a sound speed profile, a

source depth, and up to six receiver depths. It assumes the ocean surface

and bottom to be flat and specularly reflecting and assumes that sound

speed varies only with depth. The sound speed profile points are connected

by linear segments so that the sound speed gradient is constant between two

depths specified in the profile. For each range, RANGER computes the

minimum number of deep turning points, n, required for any ray to reach the

receiver range. It then finds all the eigenrays with n, n+l, and n+2 deep

turning points. For each eigenray the launch angle, bottom reflection angle

(if the ray is bottom reflected), receiver angle, transit time, and general

ray description (i.e., whether surface reflected, deep refracted, etc.) is

printed.

RANGER can also find eigenrays which pass through the sediment. For

these cases, the rays are traced downward until they reflect from the

particular sediment layer interface of interest or until they turn around,

by refraction, within a sediment layer.

I. SOUND SPEED PROFILE

The sound speed profile in the water column may either be read

in directly as depth-speed pairs or computed from depth-temperature-salinity-

latitude measurements using Leroy's formula. The sediment profile is

obtained by reading in the layer thickness, speed at the top of the layer,
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and the linear gradient of sound speed with depth for each layer. The

depth and speed at each layer interface is then computed and added to the

water profile. Whenever a sound speed mismatch at an interface occu. s,

an artificial, very thin (0.1 mm) layer is introduced between the two real

layers. The sound speeds at the top and bottom of this artificial layer

are chosen so as to eliminate the mismatch. A ray which passes through

such a layer is refracted to exactly the same extent it would be if it

passed directly through the sound speed discontinuity. Similarly a ray

which turns around inside such a layer exits with the same angle as it

entered, corresponding to a reflection from the lower (real) layer of a

ray incident at less than the critical angle. These artificial layers are

introduced only as a programming convenience; the usual computations for

a ray traversing a layer (e.g., travel time) are suppressed except for the

angle change.

After the sound speed profile is assembled it is modified slightly to

account for the effect of the earth's curvature on ray paths. This is

accomplished by modifying each depth-speed pair in the profile as follows:

z' = z(1 + z/(2RE)) (Al)

c = cBE/(R Ec) ,(A2)

where z is depth, c is sound speed, and RE is the earth's radius. Also,

the sound speeds are adjusted where necessary so that the sound speed

difference across a layer is never less than 10
- 6 m/sec (i.e., no zero

gradient layers are allowed).

Finally, new points corresponding to the source depth and up to six

receiver depths are inserted in the profile. The sound speeds at these

depths are obtained by linear interpolation.
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II. RAY CALCULATIONS WITHIN A LAYER

For a ray traversing a layer we are interested in computing the

entrance and exit angles, ei and ef, the horizcntal range displacement,

,r, and the transit time (Fig. Al).

The d.rivations which follo are constructed to work for upgoing as

well as downgoing rays, and for rays which turn around within a layer.

In the latter case, ef=o.

The angles are related by Snell's law:

cs6 cos
cos e Co sourc A}

sourceA3)

The ray path in a layer of constant sound speed gradient is an arc of

a circle, so the range displacement can be found by

,Ir = RIsin ef- sin 6i1 (AL)

The laye- penetration, h, is given by:

h = Rjcos ef - cos e (A5)

where R is the radius of the arc. For a nonvertexing ray, h is the layer

thickness. Combining Eq. (A4) with Eq. (k5) yields

,, =hsin of sin
hos ef -cos (A

Computationally, this is a poor formula because cancellation errors occur

when e-.ef. However; it can be rewritten with the aid of trigoniometric

identities in the form:
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cos e + cos e
sin = h + sin e ()

which is the formula used in RANGER. The transit time, it, is given by

At ds dz (A8)

At S c-- (7 r C(z) jsin e(z7

where s is the pathlength. But, by Eq. (A3),

sin eI = - (Ag)

Combining Eqs. (A8) and (A9) yields

At = P dz (A.0)
Jo c~z W f ?'- p2

c(z) = ci + g(z-zi)

dc = gdz

At = 1 l /  J dc

9 Ci  c V__L-c

1 C 1 + J ._, 1/ 2 /p

where g is the sound speed gradient in the layer.
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III. RAY CLASSIFICATION

Since the number of possible eigenrays for a given configuration of

source, receiver, sound speed profile, and receiver range may be infinite,

it is necessary to classify them so that the ones of real interest can be

selected. RANGER classifies rays according to the formula

r(es) = nD c(es) Dl(e s ) ± D2 (es)

which defines the ray range r in terms of the number of deep turning

points, n, the cycle distance Dc, the source angle, esI and the

source and receiver range segments, D1 and D2 . D1 and D2 are jimply the

range displacements associated with those segments of the ray which lie

above the source and receiver (see Fig. A2). To calculate Dc, Dl, and

D2 the ray is first traced through a half cycle, from the point at whi.ch

it reflects or refracts at or near the surface to the point at which it

reflects or refracts at or near the ocean bottom (or one of the reflecting

sediment layer interfaces). The range displacement, 6r,, for each layer

penetrated is computed and tabulated. Then D c Dl, and D2 are computed

according to the following expressions (see Fig. A3):

DC 6= ir (A12)
c i=IT

ISRCE-1
D = E '.r (A13)

i=IT

RCVR-1D 2: = r (A14)
iIT

The total range for given n and given signs of D1 and D2 is calculated for

specified angles of the source subject to the following definitions and

restrictions.
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1. A deep turning point refers to either a reflection or a refraction.

The depth of penetration is limited to the depth of a given reflecting

layer. The ocean bottom or deepest subbottom layer is always considered

reflecting.

2. The range could be negative if n=O for some combinations of the

signs of D1 and D2; this is physically meaningless and so these combinations

are disallowed.

3. The range is undefined (and not computed) for rays which do not

penetrate to the receiver depth.

This total range, when computed for several angles of departure of

the rays at the source, can be used to construct range versus source angle

curves (r-e curves).

IV. RANGE-ANGLE CURVES

Shown in Fig. A4 is a set of r-e curves for the profile of Fig. A5

with n=2, a source at 410 m depth and a receiver at 1200 m depth. The

eigenrays are given by the intersections of the curves with the receiver

range line. Note that

1. only positive es are used; the sign of D1 determines the true

sign of the launch angle;

2. for all angles less than 5.4410° r is undefined because the rays

don't reach the receiver depth for smaller angles;

3. the discontinuities in the r-e curves (Fig. A4) at 8.04420 and

11.57650 are caused by features A and B in the sound speed profile

(Fig. A5);

4. the peak at 14.3522 ° , where the r-e curve is continuous but its

first derivative changes sign, is caused by feature C in the profile.

When eigenrays found just to the right of the peak in the r-e curve are

used for intensity calculations they produce false caustics. This problem

is an artifact of the straight line segment approximation; and

5. the slope change at 21.28000 shows the effect on the r-9 curves

when the rays begin to reflect from the bottom. For larger angles, r

decreases steadily until, at e,=900, r=0.
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V. CRITICAL ANGLES

As described above, certain features in the sound speed profile can

cause discontinuities and peaks to appear in the r-e curves. These

irregularities in the r-e curves must be taken into account when searching
for eigenrays since they are found by locating intersections of the r-e

curves with the receiver range. Fortunately, the angles at which dis-

continuities occur can always be found easily. This is not quite the case

with peaks (range maxima): though the angles at which they might occur

are easily found, it is not easy to eliminate false alarms. For this

reason RANGER treats all candidate peak angles alike, resulting in a

slight loss in speed.

To find ray angles at the source which are associated with

discontinuities or maxima (peaks) in the r-e curve, RANGER starts at the

source depth and works down, searching for a sound speed, cM, which is

greater than any which have occurred previously. When such a depth-speed

pair is found, the associated angle is computed by

cos eM = CSRC/cM . (A15)

By Snell's law, this is exactly the angle at the source that is required

to cause a ray to turn around at the depth at which cM occurs. Whether

this angle (eM) corresponds to a discontinuity or a possible peak is

determined by examining the next depth-speed pair. If the speed there is

less than CM, there is a discontinuity. Otherwise, eM is classified as a
possible peak angle. After examining all profile points below the source

depth the process is repeated, this time starting at the source depth and

working toward the surface. The resulting set of angles (eM) are printed

out and are designated as critical angles (not to be confused with the

critical angle associated with reflection from an interface).
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VI. RAY DESIGNATION

If a ray reflects from the ocean's surface, the ray is designated

SR; if it refracts near the surface it is designated SR*. Similarly,

ocean bottom reflection and refraction designations are BR and BR*,

respectively. Rays which penetrate the bottom and enter the sediment

are designated BP rather than BR or BR*.

VII. EIGENRAYS

Before any eigenrays can be found, the sound speed profile must be

assembled and the critical angles (eM) found. Then, since RANGER is

completely automated, it must determine which ray classifications at

least have the possibility of containing eigenrays. This determination

is made by computing the minimum number of deep turning points required

for a ray to reach the receiver range. Mathematically, this can be written

D + D + D receiver range , (A16)
CMAX  MAX MAX

where D is the largest cycle distance the profile allows and DCMAX 1MAX

and D2MAX are the source and receiver incremental distances associated

with D cMAX. The maximum cycle distance. D CMAX, is found by computing Dc

for every critical angle (for discontinuities, two angles near and on either

side of the critical angle are used) and by taking the largest De encoun-

tered as D cMAX. The minimum number of deep turnings, nMIN, is obtained

by rounding

receiver range - D 'M - D2 M XA

cMAX

up to the next higher integer. There is no guarantee that eigenrays exist

for nMIN, but this is the minimum number of deep turnings for a ray to
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potentially be an eigenray. RANGER finds the eigenrays which do exist
for nMIN, nMN+l, and n IN+2 and all allowed sign combinations of D

and D2 .

The method used to find the eigenrays of a given classification

relies on the fact that the r-e curves are always concave upward. The

range at each pair of adjacent critical angles (en) is computed (for break

angles, angles very near the critical angle are used). If the two ranges

obtained are both less than the'receiver range then there are no eigenrays

between these two angles and RANGER moves on to the next pair of critical

angles. If one range is less than the receiver range and the other is

greater then there is precisely one eigenangle between the critical angles

and a standard root-finding subroutine is invoked to find it. If both

ranges exceed the receiver range then there are either no eigenangles

between the critical angles or there are two. An angle is chosen roughly

halfway between the two critical angles and the range is computed at that

angle. If this range also exceeds the receiver range, then RANGER concludes

there are no eigenangles in the interval. However, if the range is less

than the receiver range then the root-finding routine is invoked twice to

find both eigenangles.

Table Al is the output from RANGER showing the eigenrays for the

configuration described in Section IV. Figure A6 is a ray trace of the

eigenrays which were found by RANGER for n-2.
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APPENDIX B

A BOTTOM LOSS MODEL BASED ON NUERICAL INTEGRATION

This appendix describes a bottom loss (plane wave reflection

coefficient) model based on a direct numerical integration of the de)yth

separated wave equation. The important advantages of such an vproach

are fourfold:

1. essentially arbitrary sound speed profiles can be tested;

2. inclusion of a continuously variable density is trivial;

3. values of the sound field thrcuighout the sediment layers are

always available for use as an additional diagnostic tool; and

4. numerical errors are relatively easily controlled.

After first discussing the mathematical basis for the model, a brief

description of t"e computer code is given. A more detailed explanation

of the code and algorithms used will be given in a later report.

A. Mathematical Model

The basic model (Fig. B-i) consists of an arbitrary number of (fluid)

sediment layers overlying a semiinfinite substrate which can be either

fluid or solid. The sediment layers may have arbitrary sound speed and

density profiles; however, the substrate is treated as completely homogeneous.

The sound pressure field in the overlying water is assumed to be

0[ iko0sin~z -i o~Sin~z] -ie. +iK oBl
P0 = A oe + R ejoin e e 0 (B1)

where ko = /C0, Ko = k0cos 0, and e is the grazing angle. Within each

sediment layer, say the jth, the sound pressure satisfies

d 2P 3 p 1(z) dP.+k 2(Z K02P. 0B)dz - .a.- Ek (z) - 5=o(

dz 2 Pz L 21 =0 , B2
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where the density is pj(z), and the wavenumber k (z) may be comloi,4x to

account for absorption. The second term in Eq. (B2) accounts for ile

(possibly) variable density in the case when the direct effect of the

gravitational field is ignored (see Bergmann'). In the substrate, there

are two fields, compressional and shear, which are most conveniently

described by the velocity potentials n (z) and *n(z) satisfying

S+(kc2n K) n = 0 (B3)

dz

and

kn 2n ,  s 2_ 2)

dz 2 + kn o *n (4

where k c n 5 nd =/c , c and c n are the compressional and

shear wave speeds in the substrate, the nth layer. With the time depen--iwot

dence e and the z-axis measured as increasing downward, Ipn and * n are

determined by the radiation condition to be

Kcz +iKoX

n =An e e e , (B5)

iK Sz+i~oX
en o -iwt

=n Bn e e e , (B6)

a=[kne2 o2] 1/2_K s ks_ 2]1/2  s
with K c= "1 K n =kn and, as before, kc and k n mayn n j ' nj n n

be complex.

At a fluid-fluid interface the well known continuity conditions apply:

iPi ' = Pi+l 1 P i+l'

at the interface (B7)

Pi Pi+l
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Upon applying these conditions at the water-sediment interface, taken as

z=O, the incident amplitude A can be eliminated and the reflection

coefficient, R, is found to be given by

ik sin L P i

0R' (B8)

ik sin e + L i
0 p1  Pl

It is clear that only cp,' (o)/cpi(o) is now required in order to compute R.

This ratio may be determined by solving the wave equation in each layer

and applying the continuity conditions plus a radiation condition in the

lower half space. If all n layers, including the substrate, were fluids,

there would be 2n unknown constants and 2n continuity conditions.

Before discussing how the wave equation is to be solved in each layer,

it is necessary to examine the continuity conditions for a fluid-solid

interface. These are continuity of the normal component of velocity,

continuity of normal stress, and continuity of tangential stress. Since

the tangential stress in the liquid vanishes, so must the tangential stress

in the solid. These conditions are given, for example, by Brekhovshikh. 2

It will be convenient to deal with the pressure in the fluid layers and the

two velocity potentials in the substrate. Denoting the shear and com-

pressional field by *s and ps, we have

fluid -1 fluid solid 4s 6s
V V +- (B9)

fluid fluid solid -1 ?sV + + (BlO)
zz zz = s -N

azfluid o0 so lid = 2 ___ + _ a - -
_
-
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where a is the stress tensor, and Xs and ps are the usual Lame' constants.

Upon reintroducing our layer numbering convention (water: ,o;
sediment: Pl,.. .,Pn_, substrate: Pn, *n) and using Eqs. (B5) and (B6),

then Eq. (Bll) may be solved for *s and thereby eliminate s and its

derivatives, from the problem. After some simple algebra, one finds

Pn- = (C'a-%)(QPn n) (B12)

Pn-1 n

where P and Q are given by

2

n (B14)
s 2

K -K
n o

K s2 2)2 + 4K 2  SK C
P n / 0n n (Bl5)

ks

n

It should be noted that if cn S=O, that is, the substrate is a fluid, then

Q=P=l, and upon using -iOnPn=Pn and -ioxpn'=Pn''pn, one obtains the usual

continuity conditions involving the pressure.

This completes the specification of the mathematical model and its

boundary conditions.

B. The Numerical Integration Bottom Loss Model

The basic idea behind the numerical integration model is now easily

grasped. Having obtained boundary conditions in the form given in

Eqs. (BI2) and (B13), one simply assumes (pn=l and thereby obtains Pn-1
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and pn-l' at the bottom of the lowest sediment layer. Knowledge of

Pn-(H n.1) and pnl'(Hn.. 1) together with the differential equation,

Eq. (B2), specifies an initial value problem which may be readily solved

numerically on a finite interval, This procedure is repeated upward

through all sediment layers until finally cpl(o) and q1 ' (o) qre obtained.

The reflection coafficient R and the bottom loss -20 loglo fRi are then

easily computed using Eq. (B8).

Program BOTIOSS (Fig. B-2) was implemented on a CDC 3200 computer. It

reads in physical parametezs which completely specify the system, computes

reflection coefficients for specified grazing angles, and then produces

printer or Calcomp plots of reflection coefficient versus angle on either

a linear or logarithmic (d) scale. A printed tabulation cf calculated

values is also generated. BOTLOSS can also print out the wavefield through-

out the sediment layers for any specified grazing angle.

At the time of this writing BOTLOSS can use any of the following

depth dependent functions.

p(z) 
p(O)

I p(O) + gpz, where g is a constant gradient

c(z) = c(O) gez, where go is a constant gradient

c(O)/Tl - 2gc/c(o)

The program is structured so that the extension of this repertoire of

functions is easily carried out.

The method used to solve the differential equation is a Runge-Kutta

scheme devised by E. Fehlberg. This variation on the classical fourth

order scheme is a relatively slow but stable method which is capable of
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continually adjusting the integration step size to meet specified local

(one step) error requirements (see Shampine and Allen). Error incurred

during the integration process is the dominant source of error in the

calculation of the reflection coefficient, so it is vital that a suffi-

ciently stringent local error requirement be specified to guarantee an

acceptably small total error. Since the global error is determined by

the local error (finite word size roundoff error is expected to be negli-

gible in this problem), it may be possible to provide a running estimate

of total error. If so, then future versions of this program will provide

estimates of the global error in the tabulated output.

Verification of the model has centered on comparison of its

predictions with those made by models which assume p(z) = constant, and

c(z) = constant or, c(z)=c(O) Il-2gc/c(O)l-I/2 (the pseudolinear model)--

assumptions which make exact solutions possible. No discrepancies greater

than a few hundredths of a decibel have been observed. In any case, since

the global error is controlled, it is always possible to obtain a desired

overall accuracy simply by requiring a sufficiently small local error.

An ultimate limit to this procedure is imposed by finite word size

and resultant roundoff error, but it is not expected that this limit will

play a role in present applications. This linkage between local and global

error has been explicitly verified in comparisons between a numerical

solution and a numerical evaluation of an analytical solution for the

cases of a constant sound speed and the pseudolinear model.

An important shortcoming of this model is the long integration time

required to solve the differential equation. This effectively limits use

of the model to sediments no thicker than about 50 to 100 wavelengths.

Critical sections of the code are being converted to assembly language,

but this will not reduce execution time enough to allow investigation of

significantly higher frequencies or thicker sediments.
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A hybrid numerical/WK technique, now under investigation, may

significantly reduce execution time.

Additional improvement will include adding the capability for

specifying c(z) and p(z) by a sequence of discrete points (Pi(zi)ici(zi),zi),

rather than through an assumption of a functional form. This modification

will then permit examination of cases when c(z) and p(z) are only approxi-

mately linear due to the distance required to establish a constant

gradient.
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APPENDIX C

HIDDEN DEPTHS: ACCEPTABLE IGNORANCE ABOUT OCEAN BOTTOMS

by

A. 0. Williams, Jr.

Normal-mode analysis of underwater-sound propagation in principle

requires knowledge of pertinent physical parameters at all depths in the

water and the bottom material--an unattainable omniscience. We present

a method for determining the maximum depth to which this knowledge is

necessary in order to hold the fractional errors in mode eigenvalues to

prescribed limits. Let h represent a vertical distance below the lower

turning point of the nth-mode solution. Insertion or removal of a horizontal

plane reflector, at this depth, alters the mode eigenfunction and there-

fore the eigenvalue E . The fractional error AE /E is a calculable function
n n n

of h ; this error being stipulated, h can be found. The calculation need
n n1

be made only for the highest mode that contributes significantly. Con-

versely, if all parameters are known to depth h, the consequent errors can

be found. Two examples are analyzed, with simplifying restrictions: deep

isovelocity water; low frequencies; many modes; bottoms that are isovelocity

(the Pekeris case) or have a positive gradient of sound speed. For

fractional errors of 10 -- 10 , h is a few acoustic wavelengths. In each

example, bottom absorption has little effect on the result.
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Introduction

In principle, wave-theoretical analyses of underwater sound propagation

require complete knowledge of sound speed, absorption coefficient, and

density everywhere in the water column and the bottom material. This is

true even when standard simplifying restrictions are imposed: (1) a C11

point source of single frequency; (2) cylindrical symmetry about the vertical

axis through the source; (3) constant water depth; (4) parameters varying

only with depth; (5) no scattering; and (6) neglect of the near field

(described by a continuous set of modes or a branch-line integral). Each

of these restraints can be relaxed, 'but the problem thus restricted is

u3ually a good starting point, and we adhere to it throughout this discussion.

Satisfactory data may often be available for the water column, but

certainly not for the whole bottom material. We therefore seek a criterion

for a depth, in the water or the bottom, below which the physical parameters

of the "hidden depths" affect the solution negligibly. A general approach

is presented and two examples are discussed.

I. The normal-mode solution

Given the restrictions listed above, the acoustic velocity potential

(r,z)--the factor exp(-iwt) beinig suppressed--or equally well the acoustic

pressure can be written in cylindrical coordinates r,z:

Nik r
1/(rz) const. -1/2 Z (d) Z (Z)e i1)

( z n  n n1

n=l
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The mode eigenfunctions Z , at source depth d or field-point depth z,

satisfy the equation

d2Zn/dZ2 + [k2(z) - k 2 1Z = 0 (2)

at all depths in the water and the bottom. Here N is the number of the

highest discrete mode; k(z) is w/c(z) with w the angular frequency and c(z)

1 2

defined by Pekeris 1 , or x can be so regarded, instead). Equation 1n

embodies the asymptotic expression for a Hankel function of k r, as is al-n

most always safe when the near field is neglected.

If at any depth z the sound speed and/or the density change practically

discontinuously, acoustic boundary condiLions must be applied at the

interface. The net result of all such steps is an eigenvalue equation from
Z2

which k can be calculated. The effects of absorption can be incorporated!' n

by assigning a suitable imaginary part to k(z).

Equation 2 always has two independent solutions that depend in detail

upon the local properties of [k 2(z) - k 2]. Linear combinations of the

two solutions can be chosen to make Z vanish at the sea surface (taken
n

here as at z = 0, with z increasing downward), and at z =

It is widely accepted that unconsolidated bottom materials display

sound speeds increasing with depth; far enough down, moreuver, the material
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must be hard dense rock. Hence in any given problem we can assume that for

each mode there exists a depth z = n--the lower turning point of Eq. 2--at

which c(z) has become large enough to make [k2(z) - k 2] turn from positive
n

to negative and remain negative for z > n' Then Z n(z) for z > t n is

;onvex toward the axis, and to satisfy the radiation coidition at infinite
depth we choose the unique form of Z that monotonically approaches zero

n

as z . For values of z < Cn (with localized exceptions, as in the

barrier underlying an acoustic duct), [k 2(z) - k n2] remains positive; Zn

is concave toward the axis and in general is an oscillatory function, a

standing wave. Ircidentally, n may lie in the water column.

11. Locating the "hidden depths"

Just above z = , let p1 be the density and u be the properly chosenn

Z for liqs. 1 and 2. Just below n , let P2 be the density and v , w ben n n

two indepundent solutions of Eq. 2, so chosen that, monotonically as z - -,

v I 0 and w . Ordinarily v and w vary exponentially or faster, with
11 n

increasing z.

At z = n , as at any other interface, the acoustic conditions aren

continuity of two quantities: (a), the acoustic pressure, and therefore

p, and therefore each Z ; (b) the z-component of acoustic particle velocity,
n

and therffnre each Zn' = dZ /dz. Because w does not satisfy the radiation

condition at infinity, we write the acoustic conditions in terms of Un and
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v., at z = . Upon taking the ratios of the two equations, we obtain

(u/U') n 6(v/V ') n (3)
nn 1 n n n

with 6 = p2/P 1 (which might be unity). To a degree, Eq. 3 is only symbolic,

although correct. The form of u appearing therein depends on physical

parameters everywhere above n , and of vn on those below n' It will

sometimes be preferable (Sec. IV) to express Eq. 3 at some z < n. However,

the general procedure will be unaltered.

Next, we consider some greater depth, z n + h n at which a horizontal

pressure-release plane can be inserted or removed. With this reflecting plane

inserted, Z (4n + h n) has to vanish. Therefore, v n(z) for z > n must be

replaced by vn + rw n , with n chosen to ensure that

(v +riw) 0 + 0 (4)

What happens to the other Z 1's is of no concern at the moment. Equation 3

is replaced by

(u /un') = 6[(v + /jw /(v + nw ')] (5)n n t n n n n n

Because of the behaviors of v and w below n , proper choice of h will maken n

n as small as may be desired. Then Eq. 5 approaches, similarly closely, the

form

(u /u ') = 6[l-n W(v, n)I / n') ] v v n ') . (6)
n n nnP n n n Cn n n 1
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W is the Wronsklan of the independent functions v and w . It can ben n

seen that v and w need not be normalized.
n n

A rigid plane, upon which Z ' vanishes, could be used in place of then

pressure-release plane. The value of n would be altered, but the new n

can also be made arbitrarily small, and Eq. 6 still holds. With either plane,

of course, the value of (u n/u n') at n differs from that satisfying Eq. 3.

2
Equation 3 leads to an eigenvalue--e.g., k --and Eq. 6 to anothern

eigenvalue, slightly alte'ed by a multiplying factor (1 + A ), in which
n

A depends upon q and other quantities in Eq. 6. This relationship connecting
n

A and n can be found; the fact that n is very small may ease the task.
n

To complete the formal problem, we specify a numerical valug for An , ex-
n

pressing the greatest acceptable fractional error in the eigenvalue. The

known or estimated precision of available physical data may guide the choice

of A . Prom 6 we find n, and finally h from Eq. 4. It is convenient
n n n

although without physical significance to regard 6[1-n . . . in Eq. 6 as

an altered density ratio. This artifice allows 6 to serve as a "tracer" of

[. ], in the process of relating A and n.
n

There is no need to find + h for all modes. If the modes are numbered
n n

2
in the usual fashion, so that k decreases as n increases, v and wn n i|

change most slowly, with increasing z, for the highest mode, numbered N.

Consequently, N + hN is an upper bound on the depth that we want to find.

In many c.ases, the acoustic absorption coefficient for mode n increases with

n. Sometimes it can be estimated confidently that all modes with N > n > n
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are attenuated too rapidly to contribute significantly at the horizontal

ranges of interest. Then no + h is a safe upper bound.no

The whole calculation could be done in reverse. If the necessary

physical parameters are known to some depth z > n , but not below, this

procedure can be used to find the maximum error in the eigenvalue of the

nth mode.

Ile now explore two simple examples, in each one treating the water column

as isovelocity, the bottom material as a fluid, and the water and bottom

densities as constants. In Example A, the bottom sound speed is a constant

Iexceeding that in the water--the standard Pekeris ca~e , although not

necessarily limited to shallow water'and low frequency. In Example B,

instead, there is a positive gradient of sound speed in the bottom. Effects

of absorption are discussed in Sec. V.

III. Example A: isovelocity bottom

The water column, of depth II, has constant sound speed c and density
wP w the bottom material, a fluid halfl-space, has constant c b > c wand

> pw e define two positive dimensionless quantities: 1 ' 2

= 11(k 2 k 2 1/2 =(k 2 kb2 ) 1/2 (7)
n. n "c b (

6
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In this example, C'n equals H, for all n. The functions u, v and w can

be expressed thus:''
2

U1 (z) = sin(Xn Z/H), 0 < z < 1I; (8)

v Pwn=ep;c2_.x n2) 1/2 (Z-H)/11] ,z > t.(9)Vw = exp[+(X 2n1/

The negative sign goes with v, the positive with w. With no reflecting

plane, the eigenvalue Eq. 3 is 1' 2

tan x 2 2 -1/2 (0
Xn tan x 6(x c - Xn )(10)

By using Eqs. 4 and 9, we find that

i= -exp[-2(xc2X 2) l/2(hn/1 ) ] (I1)

and that [l-n . . . in Eq. 6 is (1 + 2n).

We consider only many-mode cases and modes for which n = N > > 1. The

modes are so ordered that Xn+i > X.. Equations 7 and 10, together with the

Appendix of Ref. 2, show that x is an angle in the second, fourth, . . .n

quadrant, starting in quadranit 2 for the lowest mode (n = 1) and increasing

by somewhat less than n for each An = +1. Hence, successively larger x 's
n

"back up," clockwise, in the pertinent quadrants, toward an odd multiple of

ir/2. The largest x ,1, cannot exceed xc; if by chance the physical parameters

yield xN = xc , xN also equals (N - 1/2)r. The normalization constant for

1,2ZN can then be shown to vanish identically1 . (An equivalent phrasing is

that such a mode is not the highest in a discrete set but the lowest in a

continuous set of modes, which collectively affect only the near field.)
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Therefore, xN for the highest nonvanishing mode can be expressed as

xN = (N - 1/2) r +. V, 0 < v < 7r/2 , (12)

with N the largest integer satisfying x < x . For many-mode cases, V
n Ci

is much less than v/2. Consequently, we can make these approximations in

1 2 2 1/2
Eq. 10: XN [(N - 1/2)]; tan xN = -/v; (x - X-

(2x)I 1 2 (x c  xN) 1/2. The result is

V= [2 -(2N-I)(Tr/x 11/2 6 (13)

which with Eq. 12 yields xN.

When the pressure-release reflector is inserted at z = H + hN, 6 of

Eq. 13 is replaced by 6(1 + 2n); v is changed by Av = AxN:

LV = 6xN - -2nv; IAxNI < < i . (14)

2
At this point, a choice of eigenvalue must be made; we adopt x , which is

2
simpler for calculations and more conservative in its results than k n. The

outcome is

A A(X 2 2 _ 26(xN)/X = -(4v/Nn)n , (15)
N (N )/xN 2xN)/N

with v obtainable from Eq. 13. In magnitude, AN is sma'ler than (?/N)Inl.

Once the greatest acceptable numerical value of A is specified, hN is
NN

found from E'qs. 11, 13, and 15. For a rough assessment of h we make

additional approximations. First, x - xN can range from just above zero

to somewhat less than it; as an average, we take x - xN 
= V/2, and use it

in- Eqs. 11 and 13. Secondly, in (hN/H) of Eq. 11, we use the empirical

relation II = NA , with the Aw the acoustic wavelength in the water.
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Then hN / can be calculated for various values of N and AN' Pairs of

numbers, in the order (AN1 hN/Aw), were found for N = 25, 50, and 100 and
-4 -5 -6

were then averaged over N to yield (10 , 3); (10 6); (10 , 8).
2 2

If kN  is chosen as the eigenvalue, converted from XN br use of Eq. 7

the equation corresponding to Eq. 15 is somewhat more complicated. For

the same three numerical values of ANJ the values of h NA are smaller

by 15--3000.

As was suggested above, it may sometimes be desired to find h nforn
0

n < N. If N - n < < N, Eq. 13 is probably still valid with n replacing0 0 0

3N. If n < N/2, a different approximate solution of Eq. 10 is available

IV. Example B: bottom material with positive gradient

'rhe water column retains the properties of Sec. III. The bottom material,

still fluid and of constant density pb' now has a positive gradient of sound
-1

speed; a typical value is +1 sec . We use a standard pseudo-linear gradient,

k 2(z) = kw2 [1-(z-H)], z > 1 . (16)

The value 6 = 1.3 x 10"3 m- 1 approximates a constant gradient dc/dz = 1 sec- I ,

provided that z - If remains considerably smaller than 1/a. Equation 16

must be treated with caution, for, at (z-11) = 1/6, c(z) becomes infinite and

for greater z, imaginary. For the present we assume that a satisfactory

"Z + Ii lies well above z - If = 1/0. kw2 in Eq. 16 could realistically be
n1 n w
replaced by a value a fe.. percent different, but this complicates the analysis

without adding to the illustrative effect.
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in the water column, Z is still given by Eq. 8 with x as in Eq. 7.
n n

For z > H, we substitute Eq. 16 in Eq. 2, and change variable from z to y

M= -- 2 / 3  2 k 2 M(z-I)] z > IH ; (17)

H = kw2  (18)

Equation 2 takes the form

2/ 2 (19)
d Zdy ynZ

11 n n1 11

which has as independent solutions the Airy functions 5  Ai (y) and Bi (y)
n n

Since k 2 < k 2 always, yn is negative at z = II and for some distance

below; y11 vanishes at z = n and is positive at all greater depths:

M-1 2(k2w

C -II = (kw2 -k 2 (N2)-I xn (20)

'The proper solution of Eq. 19 is Ai(yn). This function oscillates for y < 0
xi n

and falls monotonically toward zero as +y n o and therefore as z - .

Hence the depth Cn given by Eq. 20 agrees with its definition in Sec. I.

Also, Ai(y n) is continuous with continuous derivative dAi/dz, thereby

satisfying tile acoustic conditions at z = n (where 6 is unity). Since Eq. 3

is automatically satisfied in this example, we find the eigenvalue equation

by applying the acoustic conditions at z = 11, not at . 'rhe result isn

lix n tan x1 = 6M-11/3 Ai(-y 1)/Ai (-y 1 ) ; (21)

Yll= IYnz=ll = M 2 / 3 (k 2 - k n 2 x ; (22)
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B = (ai3) - 2/3 (23)

In standard notation, Ai' in Eq. 21 is dAi/dyn MIAi is dAi/dz, which

is needed in the acoustic conditions. Evidently, for all z > 11 both u and
n

vn of Sec. II equal Ai(yn). The independent solution is Bi(y n ), which

oscillates for z < Cn and diverges toward + infinity as z '.

In Sec. III, N and xN were set by the physical parameters, but that is

not so, here. We must establish meaningful values for N and xN. In

particular, they must correspond to an acoustic field restricted to depths

z in which Eq. 16 still approximates a-constant dc/dz, to agree with geo-

physical facts. IWe start by arguing that, given a many-mode field in decp

water, at least the lower eigenvalues must approximate those of the Pekeris

problem in Sec. III. This is perhaps most easily seen by temporarily setting

6 = 1 and applying the WKB method6. The Bohr-Sommerfeld integral that
2

establishes k isn

k 22(z) - k ] = (n - 1/4)r; n = 1, 2, .... (24)n
0

It turns out that (4n-1) < < II for n not too large, and therefore Eq. 24

is little changed by using II for the upper limit, which then gives the IVKB

solution of the Pekeris problem. It follows from Eqs. 7 and 24 that x 111r.

We therefore try N = II/X w , which is approximately true in the Pckeris pr9blem,

and xN = Nn. Equation 20 yields

- H= (40) - = 190 m , (25)

which when put into Eq. 16 leads to c( N )/c w = 1.15--a physically reasonable

value and one only 2 or 3% above the linear approximation. This choice of N

appears to be quite satisfactory.
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2The sane values, used in Eq. 23, show that y BxN > 4.6. for

acoustic frequencies not less than 25 liz. Consequently, asymptotic forms

Sof the Airy functions can be substituted in Eq. 21, with an error no more

than 2 to 3%. The outcome is

tan xN -6tan(PN + /4); N = 2(BxN2)3/2/ 3  (26)

Seeking an approximate solution of Eq. 26, we write

X N = n1n - c; tan xN  -tans , (27)

with 0 < e < ff and n an integer (n, < N). Although e's of 0, Tr/2, or Ir

might satisfy the eigenvalue equation, these exact values are highly unlikely,

because any one of them would require a precise combination of several physical

parameters.

Approximate solutions of Eqs. 26, 27 are fairly easily derived for C

near 0, fr/4, v/2, 3n/4, or 7r. We indicate the procedure for 2 < < T2 /4,

the most plausible surmise when ( n - 11) < < 11, and state results for the

other special cases. After tan xN in Eq. 26 is approximated by -, 'N

can be found:

S

- /4) n + s/6 (n2 - 1/4) I [1 + 6(n 2 _ 1/4)1], n2 = 1,2... (28)

From Iiqs. 26 and 28, we calculate xN, using the binomial theorem for powers

of J:

xN B-1 2[(3vT/2)(n 2 - 1/4)]1/3 [1 + (29)N236(n 2 _ 1/4)7 ]  29

With the pressure-release plane inserted at z = N + hNo 6 in Eq. 29 is

to be replaced by 6[...] 1, as in Eq. 6 (except that II now replaces N) .

157 P



In [ W is 7 1 ; VNVN is (AiA'),,, and asymptotic forms 5 can be used

as they were to obtain Eq. 26. The result is that (1/6) in Eq. 29 is to

be multiplied by [I - 2n csc(2PN + 7r/2)], which (from Eq. 28) is (I - n6/e).

Comparison of this result with Eq. 29 leads to

AXN B 1/2 [(31/2)( - /14)])l/3 [ 37r)/(n - 1/4)]

= nXN/ [31(n 2 - 1/4)] (30)

2 2
Then with AN = A(xN 2)/xN2 we have

AN -2/[37rn2 - 1/4)] < 0.1 n (31)

the inequality holds because n2 > 2 forf> 25 Hz, as is found by calculating
22

BxN2. The same result, AN < 0.11, also holds for e near 7r, e near 7/2,

I - 11/41 < 0.25 and JE - 3V/41 < 0.25. These approximations cover much of

the range of e, and there is no reason to expect markedly different results

for any other value of c.

Equation 4, with Ai and Bi for v and w, and with asymptotic values of

the Airy functions, gives

T= -1/2 exp(-4 )'h /3) ; (32)

Yh is YN at z = N + hN) which from Eqs. 17 and 20 means that Y = hN'

Using M from Eq. 18, we obtain

N 2.7 yh 1/3 (X in meters) (33)

With AN taken as 0.In and with the numerical values of AN prescribed in

Section III, we find at f = 25 1z the combinations (10 - , 1.9), (10-5

2.4), (10 - 6 , 2.8). The second entry in each parenthesis is hNAw ; this

1/3
quantity increase slowly with frequency, as f/. Comparison with tabulated
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values shows that even for the smallest Yh encountered here (about 2.8)

the asymptotic form of Ai/Bi used to obtain Eq. 32 is in error by less

than 5%, a completely negligible discrepancy in view of our various approximations.

Two points of difference from Example A must be kept in mind. First,

in this example we have defined N, the number of the highest mode to be

considered, as N = li/X W--a reasonable but not inevitable choice. Second,

hN is measured down from depth r, not liL Equation 25 shows that the top

of the "hidden depths" lies below the bottom interface by a distance Az:

Az = z - H = 190 m + h . (34)N

At 25 1Hz, for example, Az is S or 6 times A , with the numerical values of

IANI used as illustrations. At higher frequencies, Az/A w of course increases,

but Az itself decreases toward about 190 m; i.e., toward N - 1•

V. Effect of including absorption

At the low frequencies emphasized here,and even at much highor frequencies,

absorption in the water column is too small to affect our discussion. In

this same low-frequency range, however, absorption coefficients in unconsolidated

bottom materials are much larger, and it appears that they increase approximately

as the first power of the frequency. Hence their possible effects should be

considered. Sections I and II remain essentially unchanged, except for the

fact that bottom absorption leads to complex eigenvalues.

Returning to Eq. 7, we treat kw as real and incorporate bottom

absorption in Example A by writing
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2 2

kb k br ab b br (3)

The inequality is justified by experimental results. Kornhauser and Raney 7

have analyzed the consequences; k must also be complex:

2 2
kn = knr + ian an  < < knr 2 (36)

Except very near cut-off, an is much smaller 7 than ab . Using Eqs. 35 and 36

in Eq. 2, with k2(z) = kb2 in the bot tom, we find v (z):

(z) =exp [- (k 2  kbr 2 ) 1/2 -z

x exp[-i (knran 1br/ab) (z - iI)] (37)
(k nr 2  k br 2 ) 1/ 2

w (z) has the same form, but with positive exponentials (see Eq. 9). It

is always true that k > k > k ; also, k rarely exceeds kbr by more than,isawy reta w nr kbr w b

say, 20%, but ab exceeds a by a much greater amount. Examination of the~n

complex exponential term in Eq. 37 shows that it has a positive argument for

z > H. That is, Eq. 37 represents an exponentially damped progressive wave,

directed downward; the presence of bottom absorption has destroyed total

reflection at the bottom interface. In contrast, wn represents a progressive

wave directed upward, its amplitude diverging exponentially as z .

Use of these expressions for vN and wN, with the help of Eqs. 4 and 7,

shows that n still has the magnitude indicated in Eq. 11 (except that the

real parts of xc and xN are to be used). The only change is that n now

has a phase factor of unit magnitude. The remainder of Sec. III can be

repeated, with only the real parts of all complex quantities--including the

new r--and no appreciable change in hN/X W is to be expected.
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It may be surprising to see no absorption of the downgoing wave, but

this results from our neglect of quadratic terms in a n and a. The vertical

attenuation of v, shown in Eqs. 9 and 37, will ordinarily far exceed true

absorptive effects. The main influence of ab is, via a , an attenuation ofn

each mode in the factors exp(ik nr) of Eq. 1.

Example B(Sec. IV) yields a similar result. We replace the real k in
w

Eq. 16 by kbr + iAb , with kbr k and % 2 < < kbr 2; Yn o Eq. 17 becomes

complex. The Airy functions Ai(y n) and Bi(y n) continue to be solutions5

ofEq. 2 after k2(z) and k n2 become complex. Also, the asymptotic expressions

for the Airy functions remain unchanged when yn is complex. lherefore n

is still given by Eq. 32, although now y is complex with an unaltered real

part and an imaginary part related to a and an. rhe outcome is the same

as in Example A: n is practically unchanged in magnitude but acquires a

phase that depends on hN *

For z sufficiently exceeding n' it is readily shown from the asymptotic

expressions used to obtain complex n that Ai represents a rapidly damped

wave progressing downward, whereas Bi corresponds to a wave progressing

upward but with an amplitude that diverges as z -.

7I. Summary

A method has been presented for naming a depth, in the water or the

bottom material, below which physical parameters need not be known because

they would have negligible effects upon the normal-mode expressions for under-

water-sound propagation. "Negligible effect" is defined by specifying the
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maximum acceptable values of the fractional errors in mode eigenvalues.

Provided that the near field is not considered, the calculation need be

made only for the highest discrete mode or, in some cases, perhaps for a

single lower mode.

Two illustrative examples have been analyzed. Each assumed isovelocity

water; in one example the bottom was isovelocity, and in the other it had

a positive gradient of soun6 speed. For several acceptable errors, the

pertinent depths were calculated, in acoustic wavelengths, below the

turning point of the mode e.-genfunction. Only -any-mode cases, at low

frequencies in deep water, were treated, although the general method is not

thus restricted. The effects of bottom absorption were also considered and

were found to be quite small, in both examples.
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APPENDIX D

A FORMAL SOLUTION TO THE PROBLEM OF WAVE PROPAGATION
IN A HALF SPACE OF TWO FLUID MEDIA SEPARATED

BY AN INCLINED PLANE

by*

C. W. Horton, Sr.

I. INTRODUCTION

In the case of constant sound speed, the wave equation is of course

separable in a multitude of coordinate systems. Of these, only the

wedge seems to offer promise of immediate applicability to relevant

propagation problems. It is well known that the wedge problem with

perfectly reflecting boundaries is exactly solvable in terms of Bessel

functions. However, in the case of one wedge boundary separating two

fluids (i.e., the bottom-water interface) the problem has never been

solved. This appendix outlines a formal solution to this rather prac-

tical problem and suggests a method for carrying the calculation forward

toward a specific numerical evaluation.

Before dealing with the two-fluid problem, it will be useful to

briefly review the simpler case of a single fluid medium. We suppose

a wedge geometry in which, for the present, the pressure is assumed

to vanish on the plane cp=a as well as on the boundary p=-0. The

coordinate system is cylindrical with the z-axis normal to the plane

of the figure. The wave

Tr Tr 2 2 7

r q z

This appendix is based on an informal report by C. W. Horton, Sr., to
which the present authors added a brief introduction.
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is separated in all three coordinates by the solution

ik z
p = R(r) sin(ane) e z

where a n=nn/a and R(r) satisfies the equation

1 d r k2 -kz  2 n (r) 0

which is just Bessel's equation. In the case that the source is located

at (ro,6o,O), the Green function is given by

G sin(cne) sin(a) f dk
G-2ia . z

lJn(k kr ) HO. (kxr>,) e ik zZ

222ean r=manrrx hs.slto a btieadi

x z <' =minlrlro1discussed in detail, by Bradley and Hudiman.

The much more interesting and potentially useful problem defined

by imposing an impedance condition, p+7( p)/n=O, on one or both wedge

boundaries, has never been considered in detail with reference -o under-

water acoustic applications. The theory of this problem, as well as

related integration techniques, is discussed by Felsen and Marcuvitz,
2

Ch. 6. As before, such a boundary condition defines a problem midway

between the case of perfectly reflecting boundaries and the two-fluid

problem. It would seem desirable to explore this problem thoroughly

with view to the application to practical propagation problems.
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Recently a different attack on wedge problems has been proposed

by Uberall and co-workers, see for example, Graves, Nagle, Uberalland

3Zarur. These authors consider a mode-mode coupling approach where
the unperturbed problem is taken to be the rectangular ocean. Only

perfectly reflecting boundaries were considered by these authors.

With these background comments in mind, a method for treating the

two-fluid wedge problem will be outlined.

II. THE TWO-FLUID WEDGE PROBLEM

Suppose fluids I and 2 are located in the wedges Ocp a and cip0t,

respectively. The plane surface Cp=(O,r) is'a pressure release surface.

We wish to write down an expression for waves whose periodic source is

at the origin and which satisfies the boundary conditions at cp-=O,a,v)

and also the Sommerfeld radiation condition at infinity. Presumably

the solution to this problem will be sums or integrals over V of expres-

sions such as

Medium No. 1. sin vH (l)(k r) , (1)(1)

Medium No. 2. sin g(n-cp) H (kr) (2)

It is clear that the basic problem is the matching of the Hankel functions

along the ray q0=ca. It was thought that a viable technique could be

obtained by using "multiplication theorem" from Erdeli, Vol. II, p. 66,
which states

00 2
JVXz) % E [ ) Jv+n(Z)

: n=O

Unfortunately, When applied to Hankel functions there is no obvious

way to proceed.
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,

S. Banerji proposes a similar problem for the wedge and suggests,

in effect, expanding Hj(1)(k2 r) in a Taylor series in (k2 -k ). He

does not carry out this idea, and it does not seem promising since the

nth term in the Taylor's series is proportional to rnHV(])(k 1r).

There is a more recent report by Karp and Sollfrey6 who solve a

similar problem by using a perturbation theory expressed as a power

series in a parameter p defined as p=k 2 -k 2 . Now, for the ocean bottom

a normalized value of p will be near 0.4, so that 4 terms in the expansion

will be necessary for 2% accuracy. Nevertheless, their method will be

pursued in some detail.

Suppose we modify the wudge geometry by indenting the vacuum

surface q=(O,7) into a semicircle of radius a (to be determined later).

In expressions 1 and 2 select only those values of V and g such that

an1H()tV( (kIa)=O and H )(k2a)=O. There is a countably infinite set of

these values.

Each of these sets is complete and orthogonal in the sense that

HIP (k 1 r) HV. (kLr) = Ni ij (3)
a"O3 (1) r- ( ) H (1) 11

Ji d (k 2 r) H. (k2r) 
= Mi ij (4)

See the paper by Cohen7 for an extensive discussion of the completeness

of these functions and of the convergences of expansions in terms of

these functions.

Thus any function H (1)(k 2 r) in the second medium can be expressed

as a linear sum of functions Hvi'(kIr) suitable for the first medium,

and vice versa.

168



The difficulty with this suggestion is that a large number of

integrals of the form

[c (1)

Ja dr rr H(kir) Hj (k2r) (5)

must be evaluated to give the coefficients of matrices that must be

inverted. It does not seem that a closed expression for this integral

exists. This is, of course, a computational difficulty only, though a

serious one.

Now suppose that over the surface

r = a , 0 -P- a , (6)

there is a simple source

p = P0 sin vcp Hv (l)(kla) e . (7)

Then we can find two sets of coefficients (Ai ) and (B.) so that the

pressure fields in media 1 and 2 (omitting e-ic) are

~(1)

pl = p0 sin(Vcp) H(1)(b,r) + A. sin(vip) HV  (k 1 r) (8)
i-ili

Ip2 = j B. sin(P p) H , (9)

respectively, and such that
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1 (2o
on q =a

-1  -1p2

where p , P2 are the densities of the media.

The coefficients of the two expansions can be determined as follows.

Substitute Eqs. (8-9) into Eq. (10), multiply by (1/r)Hv1(k Ir) , and

integrate from a to -. This gives P

Po sin(v) f dr r - I IIII(klr) Hv()(klr) + A N sin(V a)

0p P P

insin c3) C . Bp

j=l .B

where [®(i)()

eeCp ]a dr r-1 HV ((kIr) H (l)(2r) • (13)
fa p

Np is defined in Eq. (3) above.

Equation 11 can be treated in a similar way to give a second

equation for A . When A is eliminated from these two equations, we
p p

get one infil.L- set of inhomogeneous equations for the sequence of

unknown coefficients (B. This analysis is entirely formal and questions

of the existence of solutions to the infinite set of equations must be

answered, questions of the convergence of the series 8 and 9 must be

answered, and a tremendous amount of numerical work must be done.

Finally, there is a question about the significance of the size of a,

which is so far arbitrary.
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The entire analysis can be repeated using instead of the V. and

11 defined above the different set given by roots of

H (k r) 1  0

r=a

Further progress in the direction outlined here will depend upon

obtaining a useful evaluation of the integral in Eq. 13. Possibly,

depending on the size of k a and k2a , an asymptotic evaluation would be

adequate. Alternatively, a direct numerical evaluation, though cumber-

some, might be a viable method.
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APPENDIX E

PARAMETERS OF RAYS IN A SEDIMENT LAYER

Several ray parameters are often useful for diagnostic purposes in

examining the results of calculations such as the reflection coefficient

of the ocean bottom. For example, for a ray penetrating into the bottom,

if the sediment sound speed is described by a positive linear gradient of

sound speed with depth, the parameters of interest include: (1) the depth

of penetration of the ray below the water sediment interface (turnaround

depth), (2) the length of the arc of the ray in the sediment, (3) the

horizontal displacement of the ray at the water sediment interface (hori-

zontal distance between the point of ray penetration into the bottom and

the point where the ray reemerges into the water), and (4) the time the

ray spends in the sediment.

Results of calculations of these parameters are shown in Figs. El

through E5. For these figures, the sound speed versus depth zs below the

water sediment interface is described by the expression

c(z5 ) = cs + gzs  ,

where c. = the sound speed in the sediment just below the water sediment

interface and g is the constant gradient of sound speed with depth. The

grazing angle specified in the figures is the angle in the water between

the ray and the water-sediment interface. In Fig. El, the ray penetration

depth is shown versus grazing angle for several realistic values of g for

the situation where sound speed at the top of the sediment column is equal

to sound speed in the overlying water. For the remaining figures (E2 to

E4) the ray parameters are shown for several values of the ratio of sound

speed at the top of the sediment to that of the overlying water (Cs/cw),

but always for a gradient of one (g=l).
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